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Introduction

This study differentiates between probability models that lead to garden-pathing
and those that fail to do so in an incremental dependency parser.  We use 
Dependency Grammar (Tesnière 1959) to describe sentence structure in 
terms of word-to-word connections called dependencies.  Figure 1 depicts an 
English sentence where the head word “loves" has links to its dependents 
"Phoebe" and "boat ".

We apply three kinds of statistical features, examining each one's usefulness 
for targeting garden-path analyses that ensnare human readers in three well-
studied cases.  The results support models of human sentence processing that 
attend more to parser-state and part-of-speech pair information than surface 
distance.
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Methods

Our parser is built to the specifications of Nivre 2004.  Each state consists 
of four data types (Figure 2), and four possible actions can be taken to get 
from one state to the next (Figure 3).

Probability models, or features, that counsel the parser on which action to 
choose were trained on converted sentences from the Wall Street Journal 
portion of the Penn Treebank.  The models are based on conditioning 
factors from state information, described in Figure 4.

We extend Frazier’s (1979) idea that garden-pathing is due to the mistaken 
pruning of the correct analysis by using k-best search. k-best search 
allows the parser to maintain a certain number of analyses (called k) 
throughout the parse.  In our model k=3.  The analyses are ranked by the 
features.  Figure 6 shows a sample state space during the parse of the 
garden path “A horse raced past the barn fell”.  If the transition that draws a 
left arc from “raced” to “horse”, signifying the human-preferred main-verb 
interpretation of the sentence (Figure 7), is ranked in the top 3, the parser 
will garden path as a human would.
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Results

We tested our parser on three garden-path phenomena.  Our goal is to see 
which features counsel for the human-preferred (i.e., garden-path) action at 
each ambiguous choice point.  
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Analysis and Conclusions

The Stack-3 feature leads the parser up the attested garden path in all cases 
studied whereas the other two features do not, as shown in Figure 11.

In a parser attentive to a wide variety of features, some reflect the human 
preferences more accurately than others.  Figure 12 depicts this ranking.

We have shown that
•An incremental dependency parser trained on the WSJ can model human 
ambiguity resolution.
•Our feature hierarchy defines a distributional basis for human parsing 
preferences.  
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http://www.msu.edu/~mferrara/Boston&HaleMCLC.pdf

The incremental dependency parser we used:
http://www.msu.edu/~mferrara/DepParse1.3.tar.gz
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(8) Main verb/reduced relative ambiguity results

Human interpretation: 
Left-arc

Globally correct interpretation: 
Right-arc
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(9) Prepositional phrase attachment ambiguity results

Human interpretation: 
Right-arc from verb

Globally correct interpretation: 
Right-arc from noun
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(10) Subject/object ambiguity results

Human interpretation: 
Right-arc

Globally correct interpretation: 
Left-arc
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(12) Distributional basis for human parsing preferences

Stack-3 >> Stack-1 >> Surface Distance
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(4) How features are made
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(11) Results for garden-path and globally correct interpretations by feature


