Phrasal stress in Beijing Mandarin disyllabic words: an investigation using focus

Hao Yi *

1 Introduction

Mandarin Chinese has been claimed to have phrasal stress which falls on a nonhead constituent: on the modifier in a modifier-noun phrase, and on the object in a verb-object phrase (ModNh and VhObj, respectively; the subscript h stands for head, and the stressed constituent is underlined). This Nonhead Stress Rule is motivated by greater information load carried by the nonhead than its syntactic head (Duanmu 2007). Taking Nonhead Stress Rule as a point of departure, the current study investigated Mandarin phrasal stress by using focus as a diagnostic tool. Fifteen pairs of homophonous disyllabic phrases, each consisting of a ModNh phrase and a VhObj phrase, were elicited under both BroadFocus and NarrowFocus. The phonetic correlates of phrasal stress—duration and F0—were measured. The hypotheses tested was that the nonheads have phrasal stress. Accordingly, the predictions were that (i) the nonheads will have greater duration and greater F0 measurements under both focus conditions, and that (ii) the increase of duration and F0 measurements on the nonheads will be greater under NarrowFocus. The results showed that at the phrase level, a ModNh and a homophonous VhObj differed significantly in duration ratio and F0 measurements, consistent with the interpretation that ModNh exhibits initial stress and VhObj exhibits final stress. However, there also existed cross-stimulus variation, which is argued to be idiosyncratic rather than random. In sum, it is concluded that Nonhead Stress Rule, despite being a weak universal, is an important component to Mandarin Prosody, and underlies the contrastive stress patterns of ModNh and VhObj.

2 Background

2.1 Nonhead Stress Rule

While primarily a tone language, Mandarin Chinese has been claimed to have phrasal stress. The distribution of stress, according to Duanmu 2007, is governed by Nonhead Stress Rule: phrasal stress falls on the nonhead constituent of a phrase.

(1) Nonhead Stress Rule (Duanmu 2007)

In the syntactic structure [X XP] (or [XP X]), where X is the syntactic head and XP the syntactic nonhead, XP should be stressed.

Therefore, stress falls on the object in a verb-object phrase VhObj, and on the modifier (adjective or noun) in a modifier-noun phrase ModNh.

<table>
<thead>
<tr>
<th>Example</th>
<th>Gloss</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) a.</td>
<td>[ʂən]-1 [tʂən]-2</td>
<td>‘business person’ ModNh</td>
</tr>
<tr>
<td>b.</td>
<td>[ʂən]-1 [tʂən]-2</td>
<td>‘to hurt people’ VhObj</td>
</tr>
<tr>
<td>(3) a.</td>
<td>[tʰʂʊ]-2 [tʰsʊ]-1</td>
<td>‘first born’ ModNh</td>
</tr>
<tr>
<td>b.</td>
<td>[tʰʂʊ]-2 [tʰsʊ]-1</td>
<td>‘to reincarnate’ VhObj</td>
</tr>
</tbody>
</table>

*I thank Draga Zec for his guidance and feedback. I also thank Sam Tilsen and Abby Cohn for their feedback.

Cornell Working Papers in Phonetics and Phonology 2015
The homophonous pairs in (2-3) differ only in syntactic structure, as indicated by the last column: (2a) and (3a) are ModN_h, where the Mod modifies the N_h; (2b) and (3b) are V_hObj, where the V_h takes action on the Obj. According to Duanmu 2007, the Mod is more prominent than N_h, whereas the Obj is more prominent than the V_h.

Nonhead Stress Rule is motivated by Information-Stress Principle: stress falls on syntactic nonheads because nonheads carry more information than their corresponding heads. This principle can be further accounted for by linking the information load of a form with its predictability: the more predictable a form is, the less information it carries.

(4) Information-Stress Principle (Duanmu 2007)

A word or phrase that carries more information than its neighbor(s) should be stressed.

Information-Stress Principle (as well as Nonhead Stress Rule) arises out of communicative effectiveness: we want the least predictable form to be conveyed with the most prominence, because it carries the most information. Therefore, the default stress should fall on the less predictable member in a disyllabic form, i.e., the Mod of a ModN_h, and the Obj of a V_hObj.

2.2 Phonetic studies on the distribution of Mandarin phrasal stress

The distribution of phrasal stress has been addressed by several acoustic and perceptual studies, all taking Nonhead Stress Rule as their point of departure. Lai et al. (2010) showed in a corpus study that V_hObj patterned like ModN_h in terms of both F_0 and duration. Specifically, the Obj of a V_hObj was no longer than the V_h, and the F_0 measurement (the height for level tones or the slope for contour tones) for the Obj of V_hObj was no larger than that for the V_h. It was found that despite the fact that V_hObj itself did not exhibit final stress, the Obj in a V_hObj was stronger than the N_h in a ModN_h in that the duration was longer and the F_0 measurement was larger (the height of level tones was higher and the slope of contour tones was steeper). It was concluded that there was no difference between disyllabic ModN_h and V_hObj in stress pattern on the basis of acoustic measurements, therefore could not confirm Nonhead Stress Rule.

Shen et al. (2013) investigated the acoustic correlates of contrastive stress between ModN_h and V_hObj. In line with Lai et al. (2010), their results demonstrated that the Obj of V_hObj was stronger than the N_h of ModN_h; the duration was longer and the F_0 measure was larger. Moreover, Shen et al. (2013) also claimed that V_hObj exhibited final stress. That is, the absolute duration of the Obj was longer than that of the V_h. However, the syllable position did not have so large an effect in ModN_h as in V_hObj: no initial stress was found in ModN_h. Their study was partly in line with Nonhead Stress Rule. However, a closer look into the methodology renders their results problematic. The study used identical ModN_h and V_hObj disyllabic pairs. The difference between a ModN_h and a V_hObj was overt indicated by the part of speech in the carrier sentence. For example, “I didn’t not say the noun V_hObj but the verb V_hObj” would prompt the participants to produce a ModN_h and subsequently a V_hObj. The problem with such elicitation procedure is that native Mandarin speakers are normally unaware of the part of speech of the majority of the words in the lexicon because there are no overtly morphological markers in Mandarin. Therefore, with no morphological markers, a disyllabic phrase like pjen-Tone1 hjou-Tone4 can either mean ‘to number’ or ‘numbers’, depending on the context within which it
occurs. Thus, the problematic elicitation procedure could have interfered with the purpose of their study.

Jia (2011) circumvented the ambiguity arising out of native speakers’ unawareness of parts of speech while controlling the segmental influences by making use of homophones that differed in terms of morphosyntactic structure. Each homophonous pair consisted of one ModNh and one VhOb. Target phrases were elicited in isolation. Admittedly, using different words could raise the issue of frequency effects, which nonetheless cannot be entirely averted in the case of identical words, either. Although that some homophonous pairs did show different phrasal stress patterns, the majority showed final stress. It was concluded that morphosyntactic structure did not govern the allocation of phrasal stress in Mandarin, which refuted Nonhead Stress Rule. The problem of this study is that the stimuli were elicited in isolated form, therefore the pattern of final stress may arise out of pre-pause lengthening.

While these studies lend great insight into the distribution of Mandarin phrasal stress, none of them confirmed Nonhead Stress Rule. Moreover, they raise methodological problems, such as the potential complications due to the unfounded reliance on Mandarin speakers’ judgement of parts of speech or due to phrase final lengthening. These concerns render the results suspicious. As a result, there is no consensus on the distribution of phrasal stress in Mandarin. Moreover, there is also no consensus on the acoustic cues of stress in a tone language like Mandarin; different acoustic cues (such as duration, various \(F_0 \) measurements, and intensity) have been claimed to be relevant to phrasal stress in different studies.

2.3 Focus as a diagnostic

Chen and Gussenhoven (2008) investigated the effect of emphasis (induced by corrective focus) on the duration and tonal implementation of monosyllabic words in Mandarin. Their results demonstrated that as the discourse context changed from NoEmphasis to Emphasis, there was a significant increase in the duration and in the \(F_0 \) range. Furthermore, they showed that under emphasis, lexical tones were realized with magnified \(F_0 \) contours, which were adapted to the durational increase of the tone-bearing syllables, therefore maximally contrasting with each other. They suggested that the effect of emphasis can be accounted for by appealing to an abstract notion of metrical prominence. The focus-introduced metrical prominence applies to the focused constituent, rendering it more prominent. However, because they only investigated monosyllabic words as the focused constituents, it is unclear how emphasis (or focus) will affect polysyllabic words/phrases with different syntactic structures, which is the task of the current study.

The current study makes use of focus to look for prosodic regularities in different stress patterns in Mandarin disyllabic words. In English, focus-introduced metrical prominence leads to the association of the nuclear pitch accent (H*L) with the focused constituent. Moreover, only the stressed syllable can coincide with the pitch accent. Given that a disyllabic word is the focused constituent, the first syllable of initial-stress words and the second syllable of final-stress words should be associated with focus-introduced metrical prominence. For instance, under narrow focus, the first syllable of ‘produce (n.)’ and the second syllable of ‘pro’d’uce (v.) should be associated with the nuclear pitch accent (H*L). These syllables thus exhibit greater durational increase and \(F_0 \) range expansion than their unstressed counterparts.

If Mandarin displays phrasal stress patterns that vary with different morphosyntactic structures, focus could function as a diagnostic tool. This study investigates the phonetic
correlates of phrasal stress in Mandarin Chinese by measuring the duration and F_0 contours under both BroadFocus and NarrowFocus. The effect of focus on duration and F_0 measurements are tested in fifteen homophous pairs of one ModN$_h$ and one V$_b$Obj. If a homophous pair of ModN$_h$ and V$_b$Obj displays different phrasal stress patterns, focus-introduced prominence should apply differently: the acoustic changes of duration and F_0 for the stressed constituents (the Mod of ModN$_h$ and the Obj of V$_b$Obj) will be of greater magnitude than for their unstressed counterparts (the N$_h$ of ModN$_h$ and the V$_b$ of V$_b$Obj).

3 Methods

3.1 Participants

Two female speakers (F01 and F02) and one male speaker (M01) who are native speakers of Beijing Mandarin participated in this experiment. All three speakers were born and raised in Beijing, and were graduate students at Cornell University at the time of recording. From their self-report, all three speakers are free from any speech and hearing problems. The recording took place in the sound-proof booth in Cornell Phonetics Lab in Department of Linguistics at Cornell University. The participants were naïve to the purpose of the study.

3.2 Test materials and data collection

The stimulus set consisted of 15 homophous pairs of ModN$_h$ and V$_b$Obj. Homophones were chosen because segmental variation within each minimal pair can be controlled. The stimulus set exhausted the possible combinations of four lexical tones (i.e. Tone1, Tone2, Tone3, and Tone4) in Mandarin Chinese to the exclusion of the Tone3+Tone3 combination due to third tone sandhi (see Appendix I). The target stimuli were elicited in two discourse contexts: BroadFocus and NarrowFocus.

One frame sentence was used throughout the experiment, as shown in (5). The disyllabic target stimulus is represented as $\sigma_1 \sigma_2$. The frame sentence ensured the target stimuli would not appear in the sentence final position so as to avoid phrase final lengthening.

\[(5) \quad t^{i}a-1 \quad tcy\text{-}2 \quad t\nu\text{-}0 \quad \text{He think say} \quad \sigma_1 \sigma_2 \quad \text{fluent fluent a lot} \quad h\text{\textav{on}}-3 \quad t\text{\textav{u}}-1. \]

\begin{center}
He thinks it's a lot more fluent to say $\sigma_1 \sigma_2$.
\end{center}

The target stimuli were elicited in three discourse contexts: BroadFocus, NarrowFocus, and PreFocus. The BroadFocus elicitations served as the baseline for the NarrowFocus elicitations. The PreFocus elicitations served as the fillers.

(i) In each trial, the speaker was first presented with a sentence in Chinese characters as the background information. The information was presented in black.

(ii) Five seconds later, the speaker was presented with a related question based on the above background information. The question was presented in red.

(iii) The speaker was instructed to answer the prompted question based on the given information.

Elicitation examples in IPA are given (11–13): (11) illustrates the BroadFocus elicitation, (12) illustrated the NarrowFocus elicitiation, and (13) illustrated the PreFocus elic-
PHRASAL STRESS IN BEIJING MANDARIN DISYLLABIC WORDS: AN INVESTIGATION USING FOCUS

In each type of elicitations, “I” stands for the background information, upon which the answer should be based; “Q” stands for the question, which was presented in red in the experiment; “A” stands for the intended answer with the focused constituent underlined, which was not presented in the experiment. The experimenter would ask the speakers to repeat the answer if the experimenter failed to perceive the intended focus.

(11) **BroadFocus elicitation**

I: ilight-1 tcyœ-2 tv-0 σuan-4 hän-3 tua-1.

> He think say σ1 σ2 fluent a lot

‘He thinks it’s a lot more fluent to say σ1 σ2.’

Q: ilight-1 tcyœ-2 tv-0 σan-2 mo-0

> He think what

‘What does he think?’

A: ilight-1 tcyœ-2 t7-0 σuan-4 hän-3 tua-1.

> He think say σ1 σ2 fluent a lot

‘He thinks it’s a lot more fluent to say σ1 σ2.’

(12) **NarrowFocus elicitation**

I: ilight-1 tcyœ-2 tv-0 σuan-4 hän-3 tua-1.

> He think say σ1 σ2 fluent a lot

‘He thinks it’s a lot more fluent to say σ1 σ2.’

Q: ilight-1 tcyœ-2 tv-0 σan-2 mo-0 σuan-4 hän-3 tua-1.

> He think say what fluent a lot

‘What does he think is fluent to say?’

A: ilight-1 tcyœ-2 t7-0 σuan-4 hän-3 tua-1.

> He think say σ1 σ2 fluent a lot

‘He thinks it’s a lot more fluent to say σ1 σ2.’

(13) **PreFocus elicitation (filler)**

I: ilight-1 tcyœ-2 tv-0 σuan-4 hän-3 tua-1.

> He think say σ1 σ2 fluent a lot

‘He thinks it’s a lot more fluent to say σ1 σ2.’

Q: ilight-1 tcyœ-2 tv-0 σan-2 mo-0 σuan-4 hän-3 tua-1.

> He think say σ1 σ2 what a lot

‘What does he think of saying σ1 σ2?’

A: ilight-1 tcyœ-2 t7-0 σuan-4 hän-3 tua-1.

> He think say σ1 σ2 fluent a lot

‘He thinks it’s a lot more fluent to say σ1 σ2.’

In every block of elicitation, there were 30 (= 15 tone combinations × 2 syntactic types) **BroadFocus** trials, 30 **NarrowFocus** trials, and 10 **PreFocus** trials. The trials were presented in a random order. The blocks were separated by five-minute breaks. The two female speakers (F01 and F02) each completed six blocks, while the male speaker (M01) only completed four blocks. A portion of F02’s data was taken out due to later modifications to the stimuli set that applied consistently to the other two speakers (F01 and M01). Since
the elicitation procedure was the same for all three speakers, the applied changes should not affect the intended elicitations. Therefore, the rest of F02’s data, together with all of F01 and M01’s data, were included in the analysis. In total, 833 trials were collected.

3.3 Acoustic analysis and statistical analysis

3.3.1 Acoustic analysis

The start and the end of both the first syllable (σ₁) and the second syllable (σ₂) were manually labelled in Praat (Boersma and Weenink 2015). Durations on the syllable level were obtained in MATLAB™. Since only real words stimuli were included to avoid unfamiliarity, hesitation and/or non-fluent speech, durations of the target syllables vary inherently based on the syllable structure of the segments, thus are not comparable between one another. For instance, the average duration of σ₁ is 40 ms longer than that of σ₂ in [souŋ]-1 [ɔn]-2. This does not necessarily mean both VhOBJ and MON of the tone sequence Tone1+Tone2 exhibit initial stress. Because the duration of [ɔn] is inherently shorter than that of [souŋ], which arises out of differences in syllable structure. The same holds for [ei]-3 [tɕʰjen]-2, where the duration of σ₁ is inherently shorter than that of σ₂. In order to render the duration measurements comparable among different pairs, the DURATION RATIO—the ratio between the duration of σ₁ and the duration of σ₂—of each disyllabic phrase was derived:

$\text{DURATION RATIO} = \frac{\text{Duration}(\sigma_1)}{\text{Duration}(\sigma_2)}$

Because the majority of of Tone3-bearing syllables exhibited a high level of creakiness or glottalization, F_0 measurements were not obtained for Tone3. Therefore, F_0 measurements of nine (= 3 tones × 3 tones) tone combinations were first obtained in MATLAB™ with Pitch Tracking Tool developed by the Cornell Phonetics Lab. The tool incorporated VOICEBOX, a third-party speech processing toolbox (Brookes 2005). For each trial, the F_0 values in Hz were measured every 5 ms within the disyllabic interval. The pitch tracking parameters were set differently for different speakers in order to get the best-fit F_0 tracks.

The F_0 values in Hz were then converted into semitones to reduce cross-speaker variation. The minimum frequency in Hz (F_0_{min}) was searched for across all of the productions by each speaker. The following formula relates frequency in semitone (F_{st}) to frequency in Hz (F_0):

$F_{st} = 12 \log_2 \left(\frac{F_0}{F_0_{\text{min}}} \right)$

For Tone1, a high level tone, $F_{st,\text{mean}}$ is the mean F_{st} value of the measurable part of the F_0 contour of a Tone1-bearing syllable, regardless of the syllable position:

$F_{st,\text{mean}} = \frac{1}{k} \sum_{i=1}^{k} F_{st,i}$

where k is the number of the measurable points within the Tone1-bearing syllable.

For Tone2, a rising tone, S_{rise} is the linear slope of F_{st} rise:

$S_{\text{rise}} = \frac{F_{st,\text{max}} - F_{st,\text{min}}}{t_{\text{max}} - t_{\text{min}}}$,
where \(t_{\text{min}} \) is the time point at which the \(F_{st} \) contour starts to rise; \(t_{\text{max}} \) is the time point at which the \(F_{st} \) contour reaches its maximum; \(F_{st\text{-}\min} \) and \(F_{st\text{-}\max} \) are the minimum and maximum \(F_{st} \) values of the Tone2-bearing syllable, respectively.

When Tone2 follows a high-offset tone (Tone1 or Tone2), Tone2 does not start to rise until at least halfway into the tone-bearing syllable due to carryover effects. When Tone2 follows Tone4, a low-offset tone, there is a low elbow point at which \(t_{\text{min}} \) could be determined.

When a Tone2-bearing \(\sigma_1 \) is followed by a non-obstruent-initial \(\sigma_2 \), \(t_{\text{max}} \) could potentially locate outside the \(\sigma_1 \) boundary, because Tone2 often reaches its peak after the acoustic offset of the tone-bearing syllable. Therefore, in the cases of Tone2-Tone2 and Tone2-Tone4, \(t_{\text{max}} \) of Tone2 on \(\sigma_1 \) is located in \(\sigma_2 \) (also in part because \(\sigma_2 \) has a non-obstruent onset in both cases). When the Tone2-bearing \(\sigma_1 \) is followed by an obstruent-initial \(\sigma_2 \), the \(F_0 \) contour is discontinued, and \(t_{\text{max}} \) is determined as the time point at which \(F_0 \) contour reaches its maximum within the \(\sigma_1 \) boundary, as in the case of Tone2-Tone1. When a \(\sigma_2 \) bears Tone2, \(t_{\text{max}} \) also locates within the \(\sigma_2 \) boundary, because the syllable following the target stimuli always starts with the sibilant [s], which discontinues the \(F_0 \) contour.

![Figure 1: \(F_{st} \) measurements in Tone2-Tone2 target stimulus produced by speaker F01.](image)

As shown in Figure 1, the target stimulus [tsʰaɪ-2 [yɐn]-2 is preceded by [ʂuə]-1 and followed by [ʂuɑn]-4. Because [ʂuə]-1 has a high offset, Tone2 on \(\sigma_1 \) does not start to rise until near the offset of \(\sigma_1 \), as indicated by \(\text{min-} \sigma_1 \). For the same reason, Tone2 on \(\sigma_2 \) also does not start to rise until halfway through \(\sigma_2 \), as indicated by \(\text{min-} \sigma_2 \). For \(\sigma_1 \), \(t_{\text{max}} \), as indicated by \(\text{max-} \sigma_1 \), occurs after the offset of \(\sigma_1 \), because \(\sigma_2 \) starts with a glide [j], a non-obstruent onset. For \(\sigma_2 \), \(t_{\text{max}} \), as indicated by \(\text{max-} \sigma_2 \), occurs before the offset of \(\sigma_2 \), because the following syllable [ʂun]-4 starts with a sibilant [s] that discontinues the \(F_{st} \) contour.

For Tone4, a falling tone and a mirror image of Tone2, \(S_{fall} \) is the linear slope of \(F_{st} \) fall:
where t_{max} is the time point at which the F_{st} contour starts to fall, whereas t_{min} is the time point at which the F_{st} contour reaches its minimum; $F_{st,\text{max}}$ and $F_{st,\text{min}}$ are the maximum and minimum F_{st} values of the Tone4-bearing syllable.

3.3.2 Statistical analysis

The effects of morphosyntactic structure (TYPE) and discourse context (DISCOURSE) on DURATION and F_{st} measurements were tested using Linear Mixed Models (lme4 Bates et al. (2015) in R version 3.2.0). Other variables of fixed effects included tone types of both syllables (TONE1 and TONE2). Stimuli (STIM) and speakers (SPK) were included in the mixed model as variables of random effects.

- **TYPE**: morphosyntactic type. Two levels: MODNh and VhOBJ.
- **DISCOURSE**: discourse context. Two levels: BROADFOCUS and NARROWFOCUS.
- **TONE1**: tone of σ_1. Four levels: Tone1, Tone2, Tone3, and Tone4.
- **TONE2**: tone of σ_2. Four levels: Tone1, Tone2, Tone3, and Tone4.
- **TONECOMB**: tone combination. Fifteen levels: from Tone1+Tone1 to Tone4+Tone4, except Tone3+Tone3.
- **STIM**: stimulus. Thirty different items (see Appendix I).
- **SPK**: speaker. Three different speakers: F01, F02, and M01.

4 Hypotheses and predictions

Hypothesis i: The nonheads have phrasal stress.

Prediction i: a) The nonheads will have greater durations under both focus conditions. Therefore, the DURATION of MODNh will be larger than that of VhOBJ. b) Tonal targets of the nonheads will be realized with magnified F_0 contours. Therefore, the MOD and the OBJ will respectively have larger F_{st} measurements than the Vh and the Nh. Consequently, MODNh and VhOBJ will exhibit different stress patterns.

Hypothesis ii: Under NARROWFOCUS, focus-introduced prominence applies only to the stressed constituent, leading to stronger production of the nonheads in both MODNh and VhOBJ phrases.

Prediction ii: Under NARROWFOCUS, the increase of both DURATION and the F_{st} measurements of the nonheads will be greater than that of their syntactic heads. Therefore, from BROADFOCUS to NARROWFOCUS, a) the DURATION of MODNh will increase and that of VhOBJ will decrease; b) the F_{st} measurements on the MOD and OBJ will exhibit significant increases whereas those on the Nh and the Vh will not exhibit significant increases or even exhibit significant decreases.
5 Results

5.1 Duration Ratio

Globally, there was an effect of Type on Duration Ratio. The Duration Ratio of ModN was significantly larger than that of VhObj (t(822) = 4.3767, p < 0.00001) (Figure 2). In particular, under BroadFocus, the Duration Ratio of VhObj was significantly larger than that of VhObj (t(420) = 2.3043, p < 0.05); under NarrowFocus, the Duration Ratio of VhObj was significantly larger than that of VhObj (t(394) = 3.9462, p < 0.0001) (Figure 3). Moreover, the Duration Ratio difference between ModN and VhObj was more pronounced under NarrowFocus (0.097) than under BroadFocus (0.057).

Figure 2: Duration Ratio of ModN and VhObj. Globally, the Duration Ratio of ModN was larger than that of VhObj.

Figure 3: Duration Ratio of ModN and VhObj, grouped by Discourse (BroadFocus and NarrowFocus). The Duration Ratio difference between ModN and VhObj was more pronounced under NarrowFocus than under BroadFocus.

Figure 4 shows the Duration Ratio grouped by Spk. While there were some consistent global patterns indicative of the Type effect, there also existed speaker-specific patterns. Under NarrowFocus, both female speakers (F01 and F02) produced ModN with significantly larger Duration Ratio than VhObj (t(167) = 3.6001, p < 0.001; t(113) = 2.2586, p < 0.05). However, the male speaker (M01) did not differentiate between ModN and VhObj with Duration Ratio under NarrowFocus (t(106) = 0.4983, p > 0.05). Out of three
speakers, only F01 differentiated between ModNh and VhObj with DurationRatio under BroadFocus ($t(173) = 3.4725, p < 0.01$).

Figure 4: DurationRatio of ModNh and VhObj grouped by Spk. Global Type effect was observed across speakers; with DurationRatio, ModNh and VhObj were better differentiated under NarrowFocus than under BroadFocus, though there existed cross-speaker variation.

Figure 5 shows the DurationRatio grouped by tone combination (Tone1 + Tone2). Consistent with the previous results, for the majority of the tone combinations, the global patterns were: 1) the DurationRatio of ModNh was larger than that of VhObj; 2) ModNh and VhObj were better differentiated under NarrowFocus than under BroadFocus. However, there were also anomalies: ModNh and VhObj were not differentiated under either Discourse condition in terms of DurationRatio (e.g., Tone1+Tone1), and the DurationRatio difference was larger under BroadFocus than under NarrowFocus (e.g. Tone2+Tone3).
PHRASAL STRESS IN BEIJING MANDARIN DISYLLABIC WORDS: AN INVESTIGATION USING FOCUS

Figure 5: DURATION RATIO of MOD Nh and VhOBJ grouped by tone combination (TONE1 + TONE2). Global Type effect was observed for the majority of the tone combinations; with DURATION RATIO, MOD Nh and VhOBJ were better differentiated under NARROW FOCUS than under BROAD FOCUS, though there existed variation across tone combinations.

The above results shown in Figures 2-5 are in line with Prediction i in that the nonheads have greater duration, therefore the DURATION RATIO of MOD Nh is larger than that of VhOBJ, under both BROAD FOCUS and NARROW FOCUS.

In Figure 6, DURATION RATIO was grouped by TYPE to better examine the DURATION RATIO change from BROAD FOCUS to NARROW FOCUS. A two-way ANOVA (factors: TYPE and DISCOURSE) showed that DURATION RATIO was conditioned by both TYPE (F(1, 829) = 19.232, p < 0.0001) and DISCOURSE (F(1, 829) = 4.13, p < 0.05). Tukey’s HSD post-hoc tests showed that for VhOBJ, the DURATION RATIO decrease (0.056) from BROAD FOCUS to NARROW FOCUS was marginally significant (p < 0.1), which is consistent with Prediction ii. However, for MOD Nh, the DURATION RATIO decrease (0.015) from BROAD FOCUS to NARROW FOCUS was not only non-significant (p > 0.1), but also departs from Prediction ii, which suggests a significant DURATION RATIO increase. Consequently, as also observed in Figures 3-5, MOD Nh and VhOBJ were better differentiated under NARROW FOCUS: the DURATION RATIO difference between MOD Nh and VhOBJ was more pronounced under NARROW FOCUS.

Linear mixed model analysis (Table 1) confirmed that there was a global effect of TYPE that on average the DURATION RATIO of VhOBJ was 0.06 smaller than that of MOD Nh (t(22.7) = -2.55, p < 0.05). No significant effect of DISCOURSE was found. However, the interaction effect between TYPE and DISCOURSE bordered on the level of marginal significance (t(799) = -1.024, p = 0.1115). Given that MOD Nh and BROAD FOCUS were assigned the value of 0, i.e., they were the dummy variables, and that VhOBJ and NARROW FOCUS were assigned the value of 1 in the mixed-effects model, such an interaction effect suggested that the DURATION RATIO decrease from BROAD FOCUS to NARROW FOCUS for VhOBJ was (marginally) significant, whereas for MOD Nh the DURATION RATIO change was non-significant. This is consistent with Tukey’s HSD post-hoc tests. Also note that when the second syllable (σ2)
Figure 6: Mean DurationRatio ± 1 standard error by Type and by Discourse. The DurationRatio of VhObj significantly decreased from BroadFocus to NarrowFocus, whereas no significant DurationRatio change was found for ModNh.

bore Tone3, the DurationRatio significantly increased by 0.36 (t(13) = 5.257, p < 0.0001). This can be accounted for by the idiosyncrasy induced by Tone3-bearing syllables in that they have shorter durations.
Fixed effects:

| | Estimate | df | Pr(>|t|) |
|--------------------------|----------|-----|----------|
| (Intercept) | 1.17 | 14.5| 0.0000 *** |
| TYPE Vbj OBJ | -0.06 | 22.7| 0.0180 ** |
| DISCOURSE NARROW Focus | -0.02 | 798 | 0.3062 |
| TYPE Vbj OBJ : | -0.04 | 798 | 0.1115 |
| DISCOURSE NARROW Focus | | | |
| TONE1 Tone2 | -0.08 | 13 | 0.1966 |
| TONE1 Tone3 | -0.09 | 13 | 0.1616 |
| TONE1 Tone4 | -0.13 | 13 | 0.0409 * |
| TONE2 Tone2 | 0.08 | 13 | 0.1850 |
| TONE2 Tone3 | 0.36 | 13 | 0.0001 *** |
| TONE2 Tone4 | 0.09 | 13 | 0.1312 |

Random effects:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Variance</th>
<th>St.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPK</td>
<td>0.0014</td>
<td>0.0378</td>
</tr>
<tr>
<td>STIM</td>
<td>0.0024</td>
<td>0.0495</td>
</tr>
<tr>
<td>Residual</td>
<td>0.0275</td>
<td>0.1660</td>
</tr>
</tbody>
</table>

Number of observations: 833, groups: STIM, 30; SPK, 3

Table 1: Results of the mixed model analysis on DURATION RATIO. Significant factors are shown in bold. Interaction between tones were not shown.

5.2 F_s measurements

5.2.1 Graphic comparisons of F_s contours

This section presents graphic comparison of mean F_s contours for all nine combinations (excluding those containing Tone3). For each tone combination, the F_s contours were averaged across speakers and repetitions for four conditions (MN_b = MODh under BROAD FOCUS, MN_n = MODh under NARROW FOCUS, VO_b = Vbj OBJ under BROAD FOCUS, and VO_n = Vbj OBJ under NARROW FOCUS). For each condition, the duration of the target syllable was normalized to the median duration across speakers and repetitions.
Figure 7: Mean F_{st} contours of Tone1-initial target stimuli. The F_{st} contours were averaged across speakers and repetitions for four conditions: MN_b = MODN_b under BROADFOCUS, blue; MN_n = MODN_n under NARROWFOCUS, green; VO_b = VOBJ_b under BROADFOCUS, red; and VO_n = VOBJ_n under NARROWFOCUS, cyan. The duration of the target syllable was normalized to the median duration across speakers and repetitions. The vertical lines indicate the acoustic onset of σ_2 as well as the acoustic offset of σ_1.

Figure 7 shows mean F_{st} contours of Tone1-initial target stimuli. For Tone1+Tone1, F_{st} contours for four conditions were nearly identical. For Tone1+Tone2, the F_{st} contours of Tone1 (σ_1) for both MN_b and MN_n were higher than those for VO_b and VO_n. Moreover, the F_{st} contours of Tone2 (σ_2) show a pronounced rise for MN_b, VO_b and VO_n, whereas such a rise was not found for MN_n. This indicates the tone target of Tone2 (rising) was not fully realized on σ_2 (N_b) of MODN_b under NARROWFOCUS. For Tone1+Tone4, MN_n and VO_n have higher overall F_{st} contours than MN_b and VO_b, which can be accounted for by DISCOURSE.
Figure 8: Mean F_{st} contours of Tone1-initial target stimuli. The F_{st} contours were averaged across speakers and repetitions for four conditions: MN_b = MOD_b under BROAD_FOCUS, blue; MN_n = MOD_n under NARROW_FOCUS, green; VO_b = VBJ_b under BROAD_FOCUS, red; and VO_n = VBJ_n under NARROW_FOCUS, cyan. The duration of the target syllable was normalized to the median duration across speakers and repetitions. The vertical lines indicate the acoustic onset of σ_2 as well as the acoustic offset of σ_1.

Figure 8 shows mean F_{st} contours of Tone2-initial target stimuli. For Tone2+Tone1, the F_{st} differences on σ_1 (Tone2) were not noticeable among four conditions. The F_{st} contours on σ_2 (Tone1) for VO_b and VO_n were respectively higher than those for MN_b and MN_n. Moreover, the overall F_{st} contours under NARROW_FOCUS were higher than those under BROAD_FOCUS. For Tone2+Tone2, F_{st} contours for four conditions were nearly identical. For Tone2+Tone4, MN_n and VO_n have higher overall F_{st} contours than MN_b and VO_b, which can be accounted for by DISCOURSE.
Figure 9: Mean F_{st} contours of Tone1-initial target stimuli. The F_{st} contours were averaged across speakers and repetitions for four conditions: MN_b = MODN_b under BROADFOCUS, blue; MN_n = MODN_n under NARROWFOCUS, green; VO_b = VBJOBJ under BROADFOCUS, red; and VO_n = VBJOBJ under NARROWFOCUS, cyan. The duration of the target syllable was normalized to the median duration across speakers and repetitions. The vertical lines indicate the acoustic onset of σ_2 as well as the acoustic offset of σ_1.

Figure 9 shows mean F_{st} contours of Tone4-initial target stimuli. For Tone4+Tone1, the F_{st} contour on σ_1 (Tone4) for VO_n was substantially steeper than those for MN_b, MN_n, and VO_b. The F_{st} contours for on σ_2 (Tone1) for VO_b and VO_n were higher than those for MN_b and MN_n. For Tone4+Tone2, F_{st} contours for four conditions were nearly identical. For Tone4+Tone4, MN_b and MN_n have steeper F_{st} contours on σ_1 (Tone4) but less steep F_{st} contours on σ_2 (Tone4) than VO_b and VO_n.

In sum, the F_{st} contours of the nine tone combinations fall into three types: (a) those that had identical F_{st} contours across four conditions (Tone1+Tone1, Tone2+Tone2, and Tone4+Tone2); (b) those that had higher overall F_{st} contours under NARROWFOCUS (Tone1+Tone4 and Tone2+Tone4); (c) those that exhibited differences in F_{st} among four conditions induced by the interaction between DISCOURSE and TYPE (Tone1+Tone2, Tone2+Tone1, Tone4+Tone1, and Tone4+Tone4). In the next section, the tone combinations that belong to Type (c) will be examined in detail.

5.2.2 Quantitative analysis of F_{st} contours

This section examines three tone combinations, i.e., Tone1+Tone2, Tone4+Tone1, and Tone4+Tone4, for which the graphic comparisons of F_{st} contours in four conditions
MN_n, VO_b, and VO_n) exhibited notable differences. For each tone combination, F_{st} measurements of both σ_1 and σ_2 were respectively fitted into a mixed-effects regression model with two fixed factors DISCOURSE and TYPE, and a random effect factor Spk. The interaction effect between DISCOURSE and TYPE was also included. The mixed-effects model is shown below, where the specific measurements of F_{st} depend on tonal categories:

$$F_{st} \sim TYPE + DISC + TYPE \ast DISC + (1 + SPK)$$

Tone1+Tone2

Tone1 (σ_1)

![Figure 10: Mean F_{st_mean} (\pm 1 standard error) on σ_1 (Tone1) of Tone1+Tone2 combination by TYPE and by DISCOURSE.](image)

| Fixed effects: | Estimate | Std. Error | df | t value | Pr(>|t|) |
|----------------|----------|------------|-----|---------|----------|
| (Intercept) | 8.71 | 0.31 | 5 | 27.710 | 0.0000 *** |
| TYPE_VObj | -0.86 | 0.33 | 46 | -2.599 | 0.0125 * |
| $\text{DISCOURSE}_\text{NARROW_FOCUS}$ | 0.15 | 0.33 | 46 | 0.438 | 0.6634 |
| TYPE_VObj | 0.10 | 0.48 | 46 | 0.199 | 0.8428 |
| $\text{DISCOURSE}_\text{NARROW_FOCUS}$ | | | | | |

<table>
<thead>
<tr>
<th>Random effects:</th>
<th>Name</th>
<th>Variance</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spk</td>
<td>(Intercept)</td>
<td>0.1365</td>
<td>0.3694</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>0.7432</td>
<td>0.8621</td>
</tr>
</tbody>
</table>

Number of observations: 52, groups: Spk 3

Table 2: Results of the mixed-effects linear regression of F_{st_mean} on σ_1 (Tone1) of Tone1+Tone2 combination. Significant factors are shown in bold.
Figure 10 shows the mean values of $F_{st,mean}$ across speakers and repetitions on σ_1 (Tone1) of Tone1+Tone2 for four conditions. $F_{st,mean}$ on σ_1 (Tone1) for ModN$_h$ was significantly larger than that for V$_b$Obj $[t_{V_bOBJ}(46) = -2.599, p < 0.05]$, which indicates that F_{st} contours on σ_1 (Tone1) for ModN$_h$ were higher than that for V$_b$Obj, as shown in Figure 7b. However, no significant effect of either Discourse or interaction between Discourse and Type was found on $F_{st,mean}$ on σ_1 (Tone1).

Tone2 (σ_2)

![Figure 11: Mean S_{rise} (±1 standard error) on σ_2 (Tone2) of Tone1+Tone2 combination by Type and by Discourse.](image)

| Fixed effects: | Estimate | Std. Error | df | t value | Pr(>|t|) |
|--|----------|------------|-----|---------|----------|
| (Intercept) | 0.01 | 0.00 | 7 | 3.416 | 0.0105 * |
| TYPEV$_b$OBJ | 0.01 | 0.00 | 46 | 1.843 | 0.0718 . |
| DISCOURSENARROWFOCUS | -0.01 | 0.00 | 46 | -1.944 | 0.0579 . |
| TYPEV$_b$OBJ : DISCOURSENARROWFOCUS | 0.02 | 0.01 | 46 | 3.173 | 0.0027 **|

<table>
<thead>
<tr>
<th>Random effects:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
<td>Name</td>
<td>Variance</td>
<td>Std. Dev.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPK</td>
<td>(Intercept)</td>
<td>1.363e-05</td>
<td>0.0037</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>1.147e-04</td>
<td>0.0107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of observations: 52, groups: SPK , 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Results of the mixed-effects linear regression of S_{rise} on σ_2 (Tone2) of Tone1+Tone2 combination. Significant factors are shown in bold.

Figure 11 shows the mean values of S_{rise} across speakers and repetitions on σ_2 (Tone2) of Tone1+Tone2 for four conditions. The main effect of Type was marginally significant: S_{rise} on σ_2 (Tone2) for V$_b$Obj was larger than that for ModN$_h$ $[t_{V_bOBJ}(46) = 1.843, p < 0.1]$.

...
which indicates that the F_{st} rise on σ_2 (Tone2) for V_{hOBJ} was steeper than that for MODN_h, as shown in Figure 7b. The interaction effect between Discourse and Type induced a significant decrease of S_{rise} on σ_2 (Tone2) from BroadFocus to NarrowFocus for MODN_h, and a significant increase of S_{rise} on σ_2 (Tone2) from BroadFocus to NarrowFocus for V_{hOBJ} [$t_{\text{TYPE:DISCOURSE}}(46) = 3.173, p < 0.01$]. The main effect of Discourse induced a marginally significant decrease in S_{rise} on σ_2 (Tone2) from BroadFocus to NarrowFocus for MODN_h, and a significant increase of S_{rise} on σ_2 (Tone2) for V_{hOBJ}. The interaction effect between Type and Discourse induced a significant decrease of S_{rise} on σ_2 (Tone2) for MODN_h under NarrowFocus.

In sum, Type significantly affected F_{st} measurements on both σ_1 (Tone1) and on σ_2 (Tone2). However, the effects were in different directions: $F_{st,mean}$ on σ_1 (Tone1) for MODN_h was larger than that for V_{hOBJ}, whereas S_{rise} on σ_3 (Tone2) for MODN_h was smaller than that for V_{hOBJ}. The interaction between Type and Discourse was found significant on S_{rise} on σ_2 (Tone2): from BroadFocus to NarrowFocus, Discourse induced a significant decrease of S_{rise} for MODN_h, but a significant increase of S_{rise} on σ_2 (Tone2) for V_{hOBJ}.

Tone4+Tone1

Tone4 (σ_1)

![Figure 12](image)

Figure 12: Mean S_{fall} (±1 standard error) on σ_1 (Tone4) of Tone4+Tone1 combination by Type and by Discourse.

Figure 12 shows the mean values of S_{fall} across speakers and repetitions on σ_1 (Tone4) of Tone4+Tone1 for four conditions. The main effect of Type was significant: S_{fall} on σ_1 (Tone4) for MODN_h was larger than that for V_{hOBJ} [$t_{\text{VO}}(46) = -2.611, p < 0.05$], which indicates that the F_{st} fall on σ_1 (Tone4) for MODN_h was steeper than that for V_{hOBJ}, as shown in Figure 9a. The main effect of Discourse was significant [$t_{\text{NF}}(46) = -1.94, p < 0.1$]: it induced a significant increase in S_{fall} on σ_1 (Tone4) from BroadFocus to NarrowFocus for MODN_h, whereas the increase was marginal for V_{hOBJ}. No significant effect of interaction between Type and Discourse was found on S_{fall} on σ_1 (Tone4) [$t_{\text{TYPE:DISC}}(46) = -1.238, p > 0.1$].
Fixed effects:

| | Estimate | Std. Error | df | t value | Pr(>|t|) |
|-------------------------|----------|------------|----|---------|----------|
| (Intercept) | 0.05 | 0.01 | 2 | 5.605 | 0.0234 |
| **TYPE Vbj** | -0.01 | 0.00 | 46 | -2.611 | 0.0122 |
| **DISCOURSE NARROW FOCUS** | 0.01 | 0.00 | 46 | 2.237 | 0.0302 |
| **TYPE Vbj** | -0.00 | 0.00 | 46 | -1.238 | 0.2222 |

Random effects:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Name</th>
<th>Variance</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spk</td>
<td>(Intercept)</td>
<td>1.815e-04</td>
<td>0.0135</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>5.176e-05</td>
<td>0.0072</td>
</tr>
</tbody>
</table>

Number of observations: 52, groups: Spk, 3

Table 4: Results of the mixed-effects linear regression of $S_{fall} \sigma_1$ (Tone4) of Tone4+Tone1 combination. Significant factors are shown in bold.

Tone1 (σ₂)

![Figure 13](image)

Figure 13: Mean $F_{st, mean}$ (±1 standard error) on $σ_2$ (Tone1) of Tone4+Tone1 combination by Type and by Discourse.

Figure 13 shows the mean values of $F_{st, mean}$ across speakers and repetitions on $σ_2$ (Tone1) of Tone4+Tone1 for four conditions. The main effect of Type was significant: $F_{st, mean}$ on $σ_2$ (Tone1) for VbjObj was larger than that for ModNh [tVbjObj (48) = 6.038, p < 0.001], which indicates that the F_{st} contours on $σ_2$ (Tone1) for VbjObj were higher than that for ModNh, as shown in Figure 9a. The interaction effect between Discourse and Type induced a significant decrease of $F_{st, mean}$ on $σ_2$ (Tone1) from BroadFocus to NarrowFocus for ModNh, and a marginal increase of $F_{st, mean}$ on $σ_2$ (Tone1) from BroadFocus to NarrowFocus for VbjObj [tTYPE:DISCOURSE (48) = 2.579, p < 0.05]. The main effect of Discourse induced a significant decrease in $F_{st, mean}$ on $σ_2$ (Tone1) for NarrowFocus [tNARROWFOCUS (48) = -2.554, p < 0.05], primarily contributed by the significant decrease in $F_{st, mean}$ on $σ_2$ (Tone1) of ModNh under NarrowFocus.
To summarize, **Type** significantly affected $F_{st_{_{mean}}}$ on σ_1 (Tone1) and on σ_2 (Tone1). However, the effects were in different directions: S_{fall} on σ_1 (Tone4) for **ModN** was larger than that for **V Obj**, whereas $F_{st_{_{mean}}}$ on σ_2 (Tone1) for **ModN** was smaller than that for **V Obj**. The effect of interaction between **Type** and **Discourse** was found to be significant on $F_{st_{_{mean}}}$ on σ_2 (Tone1): from **BroadFocus** to **NarrowFocus**, **Discourse** induced a significant decrease of $F_{st_{_{mean}}}$ on σ_2 (Tone1) for **ModN**, but a marginally significant increase of $F_{st_{_{mean}}}$ on σ_2 (Tone1) for **V Obj**.

Tone4+Tone4

Tone4 (σ_1)
Fixed effects:

| | Estimate | Std. Error | df | t value | Pr(>|t|) |
|----------------|----------|------------|-----|---------|----------|
| (Intercept) | 0.05 | 0.01 | 1 | 5.679 | 0.0807 |
| **TYPE** | -0.01 | 0.00 | 31 | -2.158 | 0.0388 * |
| **DISCOURSE** | 0.01 | 0.00 | 31 | 1.947 | 0.0607 |
| **DISCOURSE** | -0.01 | 0.01 | 31 | -1.990 | 0.0555 |

Random effects:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Name</th>
<th>Variance</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spk</td>
<td>(Intercept)</td>
<td>1.132e-04</td>
<td>0.0106</td>
</tr>
<tr>
<td>Residual</td>
<td></td>
<td>7.156e-05</td>
<td>0.0084</td>
</tr>
</tbody>
</table>

Number of observations: 36, groups: Spk, 2

Table 6: Results of the mixed-effects linear regression of S_fall on σ₁ (Tone4) of Tone4+Tone4 combination. Significant factors are shown in bold.

Figure 14 shows the mean values of S_fall across speakers and repetitions on σ₁ (Tone4) of Tone4+Tone4 for four conditions. The main effect of TYPE was significant: S_fall on σ₁ (Tone4) for ModNh was larger than that for VhOBJ \[t_{VhOBJ}(31) = -2.158, p < 0.05\], which indicates that the F下降 fall on σ₁ (Tone4) for ModNh was steeper than that for VhOBJ, as shown in Figure 9c. The interaction effect between DISCOURSE and TYPE was marginally significant \[t_{TYPE:DISCOURSE}(31) = -1.990, p < 0.1\]: it induced a significant increase of S_fall on σ₁ (Tone4) from **BroadFocus** to **NarrowFocus** for ModNh, and a marginal decrease of S_fall on σ₁ (Tone4) from **BroadFocus** to **NarrowFocus** for VhOBJ. The main effect of DISCOURSE induced a marginally significant increase in S_fall on σ₁ (Tone4) for **NarrowFocus** \[t_{NARROWFOCUS}(31) = 1.947, p < 0.1\], primarily contributed by the significant increase of S_fall on σ₁ (Tone4) of ModNh under **NarrowFocus**.

Tone4 (σ₂)

![Figure 15: Mean S_fall (±1 standard error) on σ₂ (Tone4) of Tone4+Tone4 by TYPE and by DISCOURSE.](image)
Fixed effects:

| | Estimate | Std. Error | df | t value | Pr(>|t|) |
|----------------|----------|------------|-----|---------|----------|
| (Intercept) | 0.04 | 0.02 | 1 | 2.315 | 0.2229 |
| TYPEVhOBJ | 0.03 | 0.01 | 31 | 4.111 | 0.0003 ***|
| DISCOURSENARROWFOCUS | 0.01 | 0.01 | 31 | 1.061 | 0.2969 |
| TYPEVhOBJ: | 0.00 | 0.01 | 31 | 0.335 | 0.7402 |

Random effects:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Name</th>
<th>Variance</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spk</td>
<td>(Intercept)</td>
<td>4.690e-04</td>
<td>0.0217</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>2.989e-04</td>
<td>0.0173</td>
</tr>
</tbody>
</table>

Number of observations: 36, groups: Spk , 2

Table 7: Results of the mixed-effects linear regression of S_{fall} on σ_2 (Tone4) of Tone4+Tone4 combination. Significant factors are shown in bold.

Figure 15 shows the mean values of S_{fall} across speakers and repetitions on σ_2 (Tone4) of Tone4+Tone4 for four conditions. S_{fall} on σ_2 (Tone4) for VhOBJ was significantly larger than that for ModNh [t(VO(31)) = 4.111, p < 0.001], which indicates that the F_{st} fall on σ_2 (Tone4) for VhOBJ was steeper than that for VhOBJ, as shown in Figure 9c. However, no significant effect of either DISCOURSE or interaction between DISCOURSE and TYPE was found on S_{fall} on σ_2 (Tone4).

In sum, TYPE significantly affected F_{st} measurements on both σ_1 (Tone4) and σ_2 (Tone4). However, the effects were in different directions: S_{fall} on σ_1 (Tone4) for ModNh was larger than that for VhOBJ, whereas S_{fall} on σ_2 (Tone4) for ModNh was smaller than that for VhOBJ. Unlike Tone1+Tone2 and Tone4+Tone4, the effect interaction between TYPE and DISCOURSE was found significant on S_{fall} on σ_1 (Tone4) rather than on σ_2 (Tone4): from BroadFocus to NarrowFocus, DISCOURSE induced a significant increase of S_{fall} on σ_1 (Tone4) for ModNh, but a marginally significant decrease of S_{fall} on σ_1 (Tone4) for VhOBJ.

<table>
<thead>
<tr>
<th>Tone Combination</th>
<th>Stressed</th>
<th>Unstressed</th>
<th>Unstressed</th>
<th>Stressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tone1+Tone2</td>
<td>–</td>
<td>↓</td>
<td>–</td>
<td>↑</td>
</tr>
<tr>
<td>Tone4+Tone1</td>
<td>↑</td>
<td>↓</td>
<td>–</td>
<td>↑ (.)</td>
</tr>
<tr>
<td>Tone4+Tone4</td>
<td>↑</td>
<td>–</td>
<td>↓ (.)</td>
<td>↑</td>
</tr>
</tbody>
</table>

Table 8: Summary of F_{st} measurements by syllable position in three tone combinations (Tone1+Tone2, Tone4+Tone1, and Tone4+Tone4). The arrows indicate the direction of change in F_{st} measurement from BroadFocus to NarrowFocus. The dots after the arrows indicate the differences in F_{st} measurement between BroadFocus and NarrowFocus were marginally significant. Otherwise, the differences were statistically significant.

For the three tone combinations that exhibited differences in F_{st} contours between VhOBJ and ModNh, the results confirm Prediction i in that the Modal and the Obj respectively had larger F_{st} measurements than the Vh and the Nh: the results are partly in line with Prediction ii in that under NarrowFocus, the F_{st} measurements on the nonheads (the Modal of ModNh and the Obj of VhOBJ) increased significantly from BroadFocus to
NARROWFOCUS in five out of six instances (except for σ_1 (Tone1) of Tone1+Tone2), whereas the F_{st} measurements on the heads (the N_h of ModN$_h$ and the V_h of V$_h$Obj) decreased significantly from BROADFOCUS to NARROWFOCUS in three out of six instances (Table 8).

5.3 Summary of results

The main findings can be summarized as follows:

1. The DURATION RATIO of ModN$_h$ was larger than that of V$_h$Obj.
2. The DURATION RATIO change (decrease) from BROADFOCUS to NARROWFOCUS was significant for V$_h$Obj, whereas such change was not significant for ModN$_h$.
3. The DURATION RATIO difference between ModN$_h$ and V$_h$Obj was more pronounced under NARROWFOCUS than under BROADFOCUS.
4. There existed cross-speaker and cross-stimulus variation.
5. For the three tone combinations (Tone1+Tone2, Tone4+Tone1, and Tone4+Tone4), the Mod and the Obj respectively had larger F_{st} measurements than the V$_h$ and the N$_h$.
6. For the three tone combinations, the F_{st} change from BROADFOCUS to NARROWFOCUS was more pronounced on the nonheads than on the heads.
7. The majority of the homophonous pairs did not exhibit differences in F_{st} contours between V$_h$Obj and ModN$_h$.

6 Discussion & Conclusion

The DURATION RATIO difference between ModN$_h$ and V$_h$Obj (Finding 1) suggested there was a global TYPE effect. Such a difference may arise from one of the following three scenarios: (A) ModN$_h$ stresses the Mod and V$_h$Obj stresses the Obj; (B) ModN$_h$ stresses the Mod and V$_h$Obj has equal stress for both V$_h$ and Obj; (C) ModN$_h$ has equal stress for both Mod and N$_h$ and V$_h$Obj stresses the Obj.

Focus comes in as a handy diagnostic tool: Finding 2 suggested Scenario (C) was the likely answer. That is, the different behaviors of DURATION RATIO change in ModN$_h$ and V$_h$Obj should be mainly attributed to the final stress of V$_h$Obj. This agrees with the observations in Shen et al. (2013) that V$_h$Obj exhibited final stress whereas ModN$_h$ exhibited no initial stress. However, such a claim would essentially undermine the validity of Duanmu’s (2007) Nonhead Stress Rule.

However, rejecting Nonhead Stress Rule as a whole in turn weakens the argument that V$_h$Obj has final stress, leaving it with no concrete theoretical foundation. Moreover, recall that Nonhead Stress Rule is motivated by the assumption that the information load a constituent carries determines its stress status. This assumption is in line with Finding 3, which shows that under NARROWFOCUS, the communicative efficiency is facilitated by means of loading more information into the stressed form, i.e., the Obj of V$_h$Obj.

Moreover, the F_{st} differences between the Mod and the V$_h$, and those between the Obj and the N$_h$ further suggested that the Mod was a stronger position than the V$_h$, and that the Obj was a stronger position than the N$_h$ (Finding 5). Similarly, Finding 6 was also
in line with the underlying assumption that motivates the Nonhead Stress Rule. Therefore, the discrepancy between Finding (2) (that V_h has final stress and $\text{Mod}N_h$ has no initial stress) and the information-motivated assumption of Nonhead Stress Rule must be reconciled.

Specifically, the Duration Ratio change from BroadFocus to NarrowFocus for $\text{Mod}N_h$ needs to be accounted for. One possible reason is that Mandarin disyllabic phrases have trochaic foot structures in that they show a strong–weak alternating pattern Duanmu (2007). Because the first syllable ($σ_1$) is already a strong position, NarrowFocus does not induce any pronounced change in Duration Ratio (ceiling effect). In this case, the focus-introduced metrical prominence is still associated with the Mod of $\text{Mod}N_h$, but is disguised by the underlying strong–weak pattern. Note that the underlying trochaic foot structures do not refute Nonhead Stress Rule. It can be understood as that the underlying strong–weak pattern sets the baseline for all disyllabic phrases, and that the real comparison should be made between the syllables occupying the same positions, i.e., between the Mod of $\text{Mod}N_h$ and the V_h of $\text{Mod}N_h \text{Obj}$, and between the N_h of $\text{Mod}N_h$ and the Obj of V_h Obj. Taking that as a departure, the Duration Ratio and the F_{st} results show that the Mod is a stronger position than the V_h, and the Obj is a stronger position than the N_h. A second possible interpretation is that there exist stimulus-dependent stress patterns that contribute to the overall non-significant Duration Ratio change for $\text{Mod}N_h$. It is possible that the majority of $\text{Mod}N_h$ stimuli in the current study did not exhibit initial stress, therefore disguising the Discourse effect. This interpretation is strongly supported by the F_{st} results, which showed the majority of the homophonous pairs did not exhibit different F_{st} contours between $\text{Mod}N_h$ and V_h Obj (Finding (2)).

While there existed variation, no speakers or stimuli showed patterns that went in the opposite direction of Findings (1–3) or Findings (5–6). For F01 and F02, the Duration Ratio of $\text{Mod}N_h$ was larger than that of V_h Obj; for M01, the Duration Ratio of $\text{Mod}N_h$ and V_h Obj were not differentiable under either BroadFocus or NarrowFocus. The Duration Ratio of $\text{Mod}N_h$ was either larger than or was not significantly different from that of V_h Obj; the F_{st} measurements of the Mod and the Obj were either larger than or were not significantly different from those of the V_h and the N_h, respectively.

For these reasons, I will tentatively argue that in line with Scenario (A) (Nonhead Stress Rule), the differences in Duration Ratio and in F_{st} measurements between $\text{Mod}N_h$ and V_h Obj reflect the difference between initial stress and final stress, which is further indicative of two different syntactic structures, and that the information-motivated Nonhead Stress Rule is an important component to the prosodic process in Mandarin as it facilitates communicative efficiency by loading more stress into forms with more information. However, I also argue that such variation are more of idiosyncrasies than randomness. It is also acknowledged that Nonhead Stress Rule is a weak universal in that whether the phrasal stress patterns will surface to differentiate between a homophonous pair of $\text{Mod}N_h$ and V_h Obj depends heavily on the idiosyncrasies of particular lexical items or individual speakers. This is because Mandarin, above all, is a tone language that uses pitch variation to contrast lexical meanings. The outstanding differences in surface prominence will inevitably result in the repressing (even loss) of the tonal realization, which is not ideal for words with a relatively low lexical frequency. On the other hand, differences in prominence are more likely to surface in highly frequent words (especially those with frequent affixes) without resulting in communicative inefficiency. As a matter of fact, such differences in prominence that comply with Nonhead Stress Rule facilitate the recognition as they render a homophonous pair of $\text{Mod}N_h$ and V_h Obj maximally differentiable from each other.
The study strongly suggests that the tendency of contrasting \textit{MODN}_h and \textit{V}_i,\textit{OBJ} results from \textit{Nonhead Stress Rule}. It is argued that \textit{Nonhead Stress Rule}, despite being weak, is an important component of the prosodic process in Mandarin Chinese, because it facilitates communicative efficiency by loading more stress into forms with more information. Perception studies are further needed in order to show whether such knowledge of contrast does exist for those homophonous pairs that do not exhibit overt contrastive phrasal stress patterns in acoustics.

\textbf{References}

Brookes, Mike. 2005. VOICEBOX: Speech Processing Toolbox for MATLAB.

\begin{flushleft}
Hao Yi
Department of Linguistics
Cornell University
Ithaca, NY 14853
hy433@cornell.edu
\end{flushleft}