
mcfgcky

Kyle Grove
Linguistics Department

Cornell University
kwg33@cornell.edu

November 19, 2010

Contents

1 Introduction and Theoretical Background 3
1.1 Multiple Context Free Grammars . 3
1.2 MCFG String Parsing . 4
1.3 Prefix Parsing as Intersection of (M)CFG and Finite State Automaton 5
1.4 Probabilistic Parsing and MCFG . 5
1.5 Probabilistic Intersection of a (M)CFG and Finite State Automaton 8

1.5.1 Inside Probability . 8
1.5.2 Renormalization by Inside Probability . 8

1.6 Entropy . 11

2 Quick User Guide to mcfgcky 13
2.1 Debugging Mode . 13
2.2 Parsing Mode . 13
2.3 Statistical Mode . 14

3 Design 14
3.1 Chart Items . 14
3.2 Inference Rules . 15
3.3 Agenda and Exhauastion Mechanism . 17
3.4 Backpointing . 17
3.5 Output . 17
3.6 Training . 17
3.7 Testing . 17
3.8 Surprisal . 17
3.9 Entropy . 17

4 Implementation 17
4.1 Utilities, Basic Data Structures, and Input Modules 19

4.1.1 Module Utilities . 19
4.1.2 Module MyQueue . 19

1

4.1.3 Module Seq . 19
4.1.4 Module Mcfgread . 19
4.1.5 Module Fileread . 19
4.1.6 Module Corpread . 19
4.1.7 Module Pcfgead . 19

4.2 Parsing Modules . 19
4.2.1 Module Item . 19
4.2.2 Module Grammar . 20
4.2.3 Module Point . 22
4.2.4 Module Concat . 25
4.2.5 Module Rules . 26
4.2.6 Module Mcfgcky . 31

4.3 Statistical Parsing . 34
4.3.1 Module Pcfg . 34
4.3.2 Module Train . 36
4.3.3 Module Inside . 38
4.3.4 Module Test . 41
4.3.5 Module Entropy . 44

4.4 Printing and Output . 47
4.4.1 Module Decompile . 47
4.4.2 Module Output . 48
4.4.3 Module Print . 49

2

1 Introduction and Theoretical Background

This document describes the implementation of a Multiple Context Free Grammar (MCFG) [H. Seki
and Kasami, 1991, Nakanishi et al., 1997] parser, implemented in OCaML for use as a back-end of
a Minimalist Grammar [Stabler, 1997] parsing system. This system utilizes the mg2mcfg compiler
described in Guillaumin [2004] as a front end. The parser features wild-card parsing over unknown
segments of arbitrary unknown length, after Lang [1988] for use over probabilistic grammars as
part of a psycholinguistic modelling tool for computing the entropies [Hale, 2006] and surprisals
[Hale, 2001] of expressive grammars intersected with automata.

The document begins with theoretical background of the MCFG formalism, probabilistic prefix
parsing, surprisal, and entropy in Section 1. In Section 2, we provide a brief user guide for the
parser. In Section 3, we provide developer documentation on the main parsing algorithm and
data structures. The document specifically focuses on the probabilistic components of parsing,
including the renormalization method [Nederhof and Satta, 2006] for finding the true intersection
PCFG conditioned on a prefix. We also examine how the entropy of this intersection grammar is
computed, using matrix inversion.

1.1 Multiple Context Free Grammars

Multiple Context Free Grammar [H. Seki and Kasami, 1991] is a mildly-context sensitive Avarind
K. Joshi and Weir. [1992] formalism, as are Minimalist Grammar [Stabler, 1997], Combinatory
Categorical Grammar [Steedman, 2000], and Tree Adjoining Grammar [Joshi, 1985].

Multiple context free grammar rules (and more generally, mildly context sensitive grammar
rules) differ from context-free rewriting rules in delineating abstract syntax from concrete syntax.
Abstract syntax refers to our method of rewriting nonterminals as other non-terminals, whereas
concrete syntax refers to how we managae the string yields of our symbols.

In a context-free production

α→ βγ (1)

α, β and γ represent strings, and the rewriting operation denoted by → conflates a category-
forming operation and a concatenation operation. The category-forming operation and concate-
nation operation are disassociated in mildly context sensitive grammars since the basic unit is
non-concatenate (think of a derived tree in TAG, which permits adjunction into it), and concrete
syntax permits fancier string yield operations than simple concatenation.

Multiple Context Free Grammar rules operate over tuples of strings. MCFG rules are of the
form

A0 → f [A1, A2, ...Aq] (2)

where the function f takes as arguments tuples of strings and returns an A0 which is also a
tuple of strings.

MCFG rules are often notated in practice with the following notation of Dan Albro [Albro],
which makes clear the evaluation of f .

t7→ t4 t5 t6 [(2, 0)][(1, 0); (0, 0); (1, 1)] (3)

This example can be read off as follows. An index (x, y) refers to the yth member (in 0-initial
list notation) of the x argument. The semicolons represent concatenations, whereas the brackets

3

designate members of the yield tuple. Thus, in the above example, a new tuple of category t7 is
formed, where the first member is simply the 0th member of the t6 tuple, and the second member
is formed from the concatenation of: the 0th member of t5; the 0th member of t4; and the 1st
member of t5. A rule such as the above example, where the second member of t7 is formed from
the interpolation and subsequent concatenation of members of t4 and t5, can thus be seen as similar
to a movement operation (MG), wrap rule (CCG), or adjunction instance (TAG).

We could simulate CFG in MCFG by introducing trivial string yield functions which just always
concatenate, always producing categories whose string yields are always 1-tuples.

S → NPV P [(0, 0); (1, 0)] (4)

We can do this because CFG is equivalent to what is called 1-MCFG. If the rewriting rules of
CFG yield only 1-tuples [M=1], then 2-MCFG will allow 2-tuples (we will say, have FAN-OUT of
2). MG are equivalent to 2-MCFG (their derivation tree languages are the same). The movements
in MG are represented as string yield functions which range over the components of the categories,
so that Merge instance will translate into a binary MCFG rule, and Move instance translate into
unary MCFG rules.

We require our MCFG to be what H. Seki and Kasami [1991] term linear and non-erasing.
Linearity restricts possible string yield functions to those which have range of type tuple of string.
It thus bans nesting of tuples inside other tuples in string yield functions. H. Seki and Kasami
[1991] show that such nesting would extend the power of MCFG to Turing-completeness. The non-
erasingness condition requires that for any MCFG rule, the string yield function cannot ’disappear’
any of the components of the children’s string yields. H. Seki and Kasami [1991] show that erasing
MCFG are not a strict extension of non-erasing MCFG, and that any erasing MCFG can be
rewritten to an equivalent non-erasing MCFG.

1.2 MCFG String Parsing

We present a sample MCFG derivation. In 1.2, we present a small MCFG which captures noun
phrase movement for unaccusative verbs such as ’fell’.

S → VP [(0, 1); (0, 0)]
VP → V NP [(0, 0)][(1, 0)]
NP → D N [(0, 0); (1, 0)]
V → ’fell’
N → ’boy’
D → ’the’

Figure 1: Sample MCFG

The VP rule in this MCFG implements the desired mapping between ’deep structure’ and
’surface structure’ by seperating ’abstract’ and ’concrete’ syntax. The VP rule’s abstract syntax
creates a VP symbol by taking the NP as the ’complement’ of V, but the string yield function over
VP evaluates as (“fell”,“the boy”). The S rule is therefore able to ‘move’ this NP up in its concrete
syntax, as seen in the sample derivation in 2.

In our sample derivation we included backpointers in the Parsing as Deduction style [Shieber
et al., 1995]; we can retrieve a derivation by following backpointers into subderivations. Importantly,

4

9 S [Frag(0,3)] → 8

8 VP [Frag(0,2),Frag(2, 3)] → 6,7

7 NP [Frag(0,2)] → 4,5

6 V [Frag(2,3)] → 3

5 N [Frag(1,2)] → 2

4 D [Frag(0,1)] → 1

3 ’fell’ [Frag(2,3)] → Term

2 ’boy’ [Frag(1,2)] → Term

1 ’the’ [Frag(0,1)] → Term

Figure 2: Sample MCFG Derivation

the derivation is just a grammar [Billot and Lang, 1989] conditioned on the full string; this fact
will enable us to port analytical tools from traditional PCFGs over incremental parse states.

1.3 Prefix Parsing as Intersection of (M)CFG and Finite State Automaton

Figure 3: Billot and Lang [1989], Lang [1988]: Ambigious Parse, as Shared Parse Graph

1.4 Probabilistic Parsing and MCFG

PCFGs have the following properties [Manning et al., 1999]

• Place Invariance: The probability of a subtree does not depend on where in the string the
words it dominates are.

• Context Free: The probability of a subtree does not depend on words not dominated by the
subtree.

5

Figure 4: Billot and Lang [1989], Lang [1988]: Ambigious Parse, as Item/Tree Sharing

9 S [Frag(0,2)] → 8

8 VP [Frag(0,2),Wild(2)] → 6,7

7 NP [Frag(0,2)] → 4,5

6 V [Wild(2)] → 3

5 N [Frag(1,2)] → 2

4 D [Frag(0,1)] → 1

3 ’*’ [Wild2] → Term

2 ’boy’ [Frag(1,2)] → Term

1 ’the’ [Frag(0,1)] → Term

• Ancestor Free: The probability of a subtree does not depend on nodes in the derivation
outside the subtree.

Our MCFG derivation trees have a context free ’abstract syntax’ [H. Seki and Kasami, 1991,
Kallmeyer, 2010]. The MCFG abstract syntax in fact enjoys Place Invariance, Context Freeness,
and Ancestor Freeness via its “context-free backbone” [Avarind K. Joshi and Weir., 1992], per-
mitting the extension of PCFG methods to more expressive mildly context sensitive grammars.
The parameters for productions in a probabilistic mildly context sensitive grammar can thus be
estimated via (Weighted) Relative Frequency Estimation for PCFG [Chi, 1999], as shown in .

P (A→ ξ) =

∑n
i=1 f(A→ ξ; τI)∑n

i=1 f(A; τI)
(5)

Relative Frequency Estimation estimates the likelihood of an outcome by taking a count of the
number of outcomes in a data set, and dividing by a count for all contexts in which the event could
have had that outcome. For a PCFG G, the event of rewriting a parent A will have outcomes which
are rules in G with left hand side A. To estimate the probability of a rule A− > ξ from corpus τ ,
we only need count the number of occurences of A → ξ in τ as the numerator, and divide by the
total number of instances of A as left hand side of a rule in τ .

6

Figure 5: Intersections of Context Free Grammars and Automata

A PCFG with arbitrary probabilities on productions may fail to define a probabilistic language.
For a PCFG G to define a probabilistic language, we require that P be proper and consistent1.
Following Chi [1999], a PCFG is proper iff

∑
λ:A→ξ)∈G P (A→ λ) = 1, i.e. for any nonterminal A,

the probabilities on rules rewriting A sum to 1. A PCFG G is consistent if
∑

x∈Σ∗ P (S ⇒ x) = 1,
if the set of all strings derived by G have probabilities summing to 1.

That G is proper is not sufficient to ensure that G defines a probabilistic language. Stolcke
[1995] demonstrates a PCFG which is proper but fails to define a probabilistic language, as shown
in 1.4.

2/3 S → S S
1/3 S → ’a’

Figure 6: Inconsistent PCFG

Stolcke [1995] shows that the set of all sentences defined by this probabilistic grammar have
probabilities which sum to greater than 1.

for all nonterminals X, the rule probabilities sum to 1

1Following here the terminology of Stolcke [1995],Chi [1999], Hale [2006], and not the terminology of Jelinek and
Lafferty [1991], who uses consistent to term what we mean by proper.

7

consistent if all string probabilities add to 1.0. = if the PCFG’s fertility matrix 2 A’s spectral
radius (largest eigenvalue) ≤ 1.0 = if the fertility matrix A is invertible.

Chi [1999] shows that if a PCFG is trained from a treebank with (Weighted) Relative Frequency
Estimation, it is guaranteed to be consistent. The fertility matrix A is indexed by nonterminals,
in which the (i, j) entry in A records the expected number of the nonterminal j from one rewriting
of the nonterminal i. Grenander [1967], Stolcke [1995] show that the inversion (I −A)−1 gives the
transitive closure of the fertility relation; this is crucial for the computation of PCFG entropy and
requires a consistent PCFG.

The spectral radius of A shows how recursive the PCFG is; if i(A) ≤ 1.0, then a derivation will
halt with certainty. If i(A) ≥ 1.0, then non-terminals are being introduced ’faster’ than they are
rewriting into terminals, with the disastrous result that some strings gain infinite probability.

1.5 Probabilistic Intersection of a (M)CFG and Finite State Automaton

1.5.1 Inside Probability

We will need (for several reasons) to compute the inside probability of a category over string
or automata. Following Manning et al. [1999, 392], we define the inside probability (βN) of a
nonterminal N on an automaton w given a grammar G by 6.

βN (p, q) = P (wpq|Npq,G) (6)

Let w(i,j) be an automaton transition sequence between i and j consuming the symbol w. The
inside probability βN (p, q) is the probability that a subtree rooted in N has the string yield w(p,q).
We typically use dynamic programming via the inside algorithm to compute inside probabilities
recursively. For a given nonterminal A, a PCFG G and right hand side ξ, let P (A → ξ|G) be the
probability of the rule A→ ξ according to G. The inside probability of a nonterminal A is defined
inductively:

Base Case: For preterminal nodes A in G, βA(p, q) = P (A→ wp,q)|G).
Inductive Case: for other nonterminal nodes A in G, for binary rules of the form A → B1C1,

A→ B2C2..., βA =
∑

R(A)∈G β(Bi)β(Ci).

1.5.2 Renormalization by Inside Probability

Nederhof and Satta [2008] describe the computation of weighted intersection PCFG. Their method
obtains the renormalized probability of a situated rule (which we situate wtih indices with (x, y),(x1, y1)...)
as a product of the original probability of the unsituated rule and the inside probabilies of situated
categories, according to:

P ′(A(x,y))→ B(x1,y1)) =
r(A→ B)βB(x1,y1)

βA(x,y)

(7)

P ′(A(x,y) → B(x1,y1)C(x2,y2)) =
r(A→ BC)βB(x1,y1)

βC(x2,y2)

βA(x,y)

(8)

This requires determining the inside probability of a rule, as described in O’Donnell et al.
[2009]. Renormalization by inside probability of the branch reflects the true information that an
incremental prefix parse contains. To condition a probabilistic context free grammar G on a finite

2equivalently, momentum matrix, first-moment matrix

8

state automata w, we need a weighted intersection G′ whose categories are intersections of categories
in G with state transitions in w. The probabilities on productions in G′ need to somehow reflect
both probabilities of rules in G and probabilities of state transitions in w.

The inside probability of a category C over a string yield w is the conditional probability of
C deriving w given the grammar G and initial probabilities of productions in G. βC moves closer
to 0.0 as w|G becomes less likely. Take an example where we have a grammar G with two rules,
PA→ B1, and P1A→ B2, where P and P1 are the initial probabilities from training. To determine
renormalized probabilities P ′ and P ′1 on the weighted intersection of G and w, P ′ should be lowered
relative to R′ to the extent that βB1 ≤ βB2 . Since the initial probabilities P and P1 are fixed from
training, the inside probabilities reflect estimated ’counts’ of rules from w, which drives home the
intuitive simularity between the renormalization equations in 7 and 8 and the equation for Relative
Frequency Estimation, presented again in 9.

P (A→ ξ) =

∑n
i=1 f(A→ ξ; τI)∑n

i=1 f(A; τI)
(9)

This approach is distinct from pooling probability from rules that do not appear in the intersec-
tion directly over to rules that do. Given the previous example, we might set P equal to P +P1 = 1
when A → B2 fails to appear in the intersection of G and w. Naive renormalization of this type
can fail to propogate the information of a string event up through the grammar. When we renor-
malize by inside probability, we adjust the probabilities of rules whenever the inside probabilities of
children non-terminals change. Intuitively, the probability of a rule is reduced whenever any path
between the rule and the string yield are eliminated; inside probability propagates this information
up to nonterminals higher in the parse. However, naive renormalization reduces the probability
of a rule R only when all paths from R are falsified. Naive renormalization overweights many
branches because it can adjust probabilities of rules low in the tree without adjusting probabilities
of ancestor branches.

For example, renormalization by the inside probability of the branch insures that branches with
zero probability and branches with low probability are treated proportionally. Naive renormaliza-
tion does not insure this because rules only lose probability when they fail to show up in a parse
tree, and not when they show up with low probability. An unguarded naive-renormalized derivation
admits items to the chart even if those items have zero probability. This could occur, for instance,
in the following pathological case, where two rules (D → F ,E → GH) are admitted to the training
grammar even though they did not show up in treebank.

The unguarded parse of the string ’1 2 3’ incorrectly gives probability to the branch headed by
A-¿D E even though it should have zero probability.

This occurs because when we parse non-probabilistically, we admit zero probability branches
into the parse; when we perform naive renormalization, we eliminate non-present items low in the
tree, moving the probability of these eliminated rules to their siblings, but we do not do so high in
the tree, because those categories are present in the parse as well.

If we parse with naive renormalization and ’with guards’, by only admitting items to the chart
when they have non-zero probability, we sidestep this problem for now.

We obtain an identical answer if we parse and then renormalize by inside probability.
Now imagine a less pathological case. The two zero count rules in 7 now have one attestation

each in treebank; we adjust the sibling rule counts accordingly.

9

1.0 100 S → A
0.5 50 A → B C
0.5 50 A → D E
1.0 50 B → F
1.0 50 C → G H
0.0 0 D → F
1.0 50 D → X
0.0 0 E → G H
1.0 50 E → Y
1.0 50 F → ’1’
1.0 50 G → ’2’
1.0 50 H → ’3’
1.0 50 X → ’9’
1.0 50 Y → ’8’

Figure 7: Pathological Training Example

1.0 S → A
.5 A → B C
.5 A → D E
1.0 B → F
1.0 C → G H
0.0 D → F
0.0 E → G H

Figure 8: Pathological Training Example, Naive Renormalization Without Guards

We again parse the string ’1 2 3’. Naive renormalization without guards still incorrectly leaves
the rules with parent A equiprobable.

However, naive renormalization with guards still has problems; it does not adjust the proba-
bilities of rules rewriting A because all children of A are attested in the chart, even though some
children have very low probabilities.

Renormalizing by inside probability of the branch sidesteps this issue because it always reallo-
cates probabilities whenever any path from non-terminal to child has been falsified.

Thus, renormalization by inside probability of the branch insures that whether zero-probability
items are filtered out of the chart or not, we will obtain the same result. Naive renormalization,
however, cannot deliver on this guarantee. The difference between 8 and 9 is exactly the problem
the parser faces on whether or not to enter zero probability items into the chart. Mcfgcky can
emulate naive renormalization, so we tested whether the policy towards parsing non-zero items
affected either of naive or inside renormalization. Parsing the prefix “the butter melted *” on
unerguacc5.mcfg, we obtained the following entropies:

1.6 Entropy

We can conceptualize entropy in terms of a discrete random variable. The entropy of a discrete
random variable is equal to −Σipi log2 pi index. A fair coin, for example, has an entropy of −(.5

10

1.0 S → A
1.0 A → B C
0.0 A → D E
1.0 B → F
1.0 C → G H
0.0 D → F
0.0 E → G H

Figure 9: Pathological Training Example, Naive Renormalization With Guards

1.0 S → A
1.0 A → B C
0.0 A → D E
1.0 B → F
1.0 C → G H
0.0 D → F
0.0 E → G H

Figure 10: Pathological Training Example, Renormalization by Inside Probability

log .5) + (.5 log .5), i.e., 1.0 bits of entropy, since each of the two possible outcomes (heads, tails)
has a 0.5 probability of occurring.

Grenander [1967] demonstrates the computation of entropies of Probabilistic Context Free
Grammars. For a PCFG with production rules in Chomsky normal form, let the set of production
rules in G be Π, and for a given nonterminal ξ denote the set of rules with parent ξ as Π(ξ)). The
entropy associated with a single rewrite of ξ is given by Equation 10

H(ξ) = −
∑

r ∈ Π(ξi)prr log2 pr (10)

A PCFG is a random process whose outcome is a derivation, and the PCFG’s total entropy
is the entropy associated with derivations in Π, where each derivation is a series of rule selection
events. Then the entropy of a PCFG is equal to the total entropy of the start symbol S, where
the entropy associated with one-step rewrites of ξ must inherit entropy associated with rewriting
children of rules in Π(ξ).

Grenander [1967]’s Theorem in Equation 11 provides a recurrence relation for determining
the entropy of the start category S; each parent accrues entropy from children weighted by the
probabilities of those children.

H(ξi) = h(ξi) +
∑

r ∈ Π(ξi)pr[H(ξj1) +H(ξj2) + ...] (11)

The theorem also provides a closed-form solution when the probabilistic context free grammar
is recursive or otherwise impractical to compute. The closed-form solution uses linear algebra
to efficiently compute the entropy of the hierarchical process in two parts: the ’local’ entropies
of parents as simple random variables, and a fertility relation. Let ~h be a vector indexed by
nonterminal symbols with each component given by Equation ??.

11

1.0 100 S → A
0.5 50 A → B C
0.5 50 A → D E
1.0 50 B → F
1.0 50 C → G H
0.02 1 D → F
0.98 49 D → X
0.02 1 E → G H
0.98 49 E → Y
1.0 50 F → ’1’
1.0 51 G → ’2’
1.0 51 H → ’3’
1.0 49 X → ’9’
1.0 49 Y → ’8’

Figure 11: Less Pathological Example

1.0 S → A
.5 A → B C
.5 A → D E
1.0 B → F
1.0 C → G H
1.0 D → F
1.0 E → G H

Figure 12: Possible Training Example, Naive Renormalization without Guards

hi = h(ξ1) = −
∑

r∈Π(ξi)

prr log2 pr (12)

Record the one-step fertility relation in a matrix A, labelled with non-terminals, where Ai,j is
the expected number of j is the number of i to appear in one rewriting of i. Then the vector of
total entropies associated with non-terminals in G is given by Equation 13.

HG = (I −A)−1~h (13)

For example, the local entropy of a category C according to a pcfg G is the entropy of a die
whose sides are labeled and weighted according to one-step rewritings of C. The inversion (I−A)−1

gives the transitive closure of the fertility relation: the expected number of j in a derivation issuing
by any number of steps from i. The dot product of right hand side vector ~h and (I −A)−1 gives a
vector of total entropies for each non-terminal, including S.

2 Quick User Guide to mcfgcky

Mcfgcky is built to work with the command line, and it’s various functions are triggered by distinct
‘modes’. Each mode has its own syntax, and the command line parsing at present is rigid as to
this syntax.

12

1.0 S → A
.5 A → B C
.5 A → D E
1.0 B → F
1.0 C → G H
1.0 D → F
1.0 E → G H

Figure 13: Pathological Training Example, Naive Renormalization with Guards

1.0 S → A
0.996 A → B C
0.004 A → D E
1.0 B → F
1.0 C → G H
1.0 D → F
1.0 E → G H

Figure 14: Possible Training Example, Renormalization by Inside Probability

Without Guards With Guards

Naive 4.517 b. 4.431 b.

Inside 4.885 b. 4.885 b.

2.1 Debugging Mode

”Usage: mcfgcky -d grammar-file 3.sentence >\n”
Given an mcfg file at location ’grammar-file’ and a sentence set in double quotes, attempt to

recognize the sentence.
EXAMPLES:
./mcfgcky -d grammars/parsingtest/bever.mcfg ”the horse raced past the barn *”
Recognize the Kleene closure of the prefix ’the horse raced past the barn’ according to bever.mcfg
./mcfgcky -d grammars/parsingtest/bever.mcfg ”the horse raced past the barn fell”
Recognize the sentence ’the horse raced past the barn’ according to bever.mcfg

2.2 Parsing Mode

”Usage: mcfgcky -p grammar-file 3.dict-file ¡4.-s 5.sentence/4.-f 5.in-file¿ ¡6.l/-pp¿ 7.¡mcfg/-mg/-
mgd¿ / 6.-dcfg¿ 7-8.outfile \n”

Given an mcfg file at location ’grammar-file’ and a sentence set in double quotes, or a corpus of
sentences, attempt to parse.Return a sample of derivation trees in mcfg or mg output. MG output
requires a dictionary file from the Guillamin compiler –for mcfg output, this file is never checked.

Options: -s/-f: if -s, parse the sentence given in double quotes. If -f, parse the unweighted
corpus of sentences in location ’in-file’. Each sentence in this corpus is double-quoted, each is
delimited with semicolon and newline. The formatting on this corpus is sensitive: please leave at
least one line of whitespace at the end, and prepare the corpus in a bona-fide text editor, as some
Mac (TextEdit) and Windows text editors will leave carriage returns which confuse filereader.ml,
which parses the corpus into a useful format.

13

Example: “the horse raced past the barn”; “the dish ran away with the spoon”;
-l/-pp: if -l, latex-output for qtree. if -pp, relatively horrible text output.
-dcfg: output a product-sum graph of the situated context-free grammar, for dot. Requires an

outfile name.
-mcfg/-mg: if -mcfg, mcfg derivation tree output. if -mg, mg derivation tree output. -mgd will

produce an X-bar style MG-derived tree, not yet implemented.
EXAMPLES:
: ./mcfgcky -p grammars/unergunacc/unergunacc4.mcfg grammars/unergunacc4.dict -s ”the

horse raced past the barn *” -l -mg unergunacc.out*
Parse the Kleene closure of the prefix ’the horse raced past the barn’ according to unergu-

nacc4.mcfg, returning a sample of mg derivation trees in qtree latex format.
: ./mcfgcky -p grammars/unergunacc/unergunacc4.mcfg grammars/bever.dict -f unerg.test.txt

-l -mcfg unergunacc.out*
Parse the corpus located at unerg.test.txt, return mcfg trees in latex, requires a dummy dictio-

nary file which will not be read.
: ./mcfgcky -p grammars/unergunacc/unergunacc4.mcfg grammars/unergunacc4.dict -s ”the

horse raced past *” -dcfg unergunacc.out*
Parse the Kleene closure of the prefix ’the horse raced past’ according to unergunacc4.mcfg,

and return the and-or graph of the grammar conditioned on this prefix.

2.3 Statistical Mode

”Usage: mcfgcky -i/-ii 3.trainingcorpus/pcfg 4.test-file -l/-q 5.out-file\n”ˆ
Generate or read in a probabilistic model for cfg or mcfg, and compute prefix probabilities,

surprisals, and entropies for each prefix.
Options: -i/-ii: if -i, induct a P(M)CFG from a weighted corpus by building a mini-treebank

and using Weighted Relative Frequency Estimation.
In addition to the above cautions regarding corpora, this corpus should be formated as follows:
(0.379, “the horse raced past the barn”);
(284e-6,“the dish ran away with the spoon”);
Corpreader.ml should have no problem with floats in standard or scientific notation to any

reasonable number of places.
if -ii, read in a pcfg. (Train.ml, Pcfgreader.ml)
This PCFG should be formatted as follows.
“0.00064636 SUBJP → PRON NBAR”
“0.39936363 SUBJP → PRON”
Leave a line of whitespace at the end. At present, this mode is redundant in that it must read

in the pcfg and the derivative mcfg seperately. Great confusion can result if the two do not match
up; the typical method as of late has been to develop the pcfg and then derive the trivial cfg. Also,
not much is known as how this mode works on non-context free grammars...there should be no
problem, but it has not really been testsed.

TESTING

3 Design

Mcfgcky is a bottom-up chart parser in the style of Shieber et al. [1995]. As such, it approaches
parsing as a deduction problem, where the axia are the string terminals and a set of inference
rules specifies the formulation of derived categories. Both the axia and derived items are contained

14

within a chart which records the entirety of the bottom-up deduction and thus eliminates any need
for backtracking.

3.1 Chart Items

As such, the basic data structure in Mcfgcky is the chart item, which represents some hypothesis
made by the recognizer for the category corresponding to a certain string segment. In Mcfgcky,
this structure is of the OCaML type item, such as follows.

• type item = {prob:float;pointer:int;cat:string;pos:span list}

The items populating the chart of a MCFG recognizer in the Shieber et al. [1995] style, like that
of a CFG CKY recognizer, must minimally contain a category label (cat) and a mapping from that
category to the input string (pos). In a CKY recognizer, this representation of the input string
segment often takes the form of a tuple of integers (x, y), where x and y denote the positions which
begin and end the string. This convention succinctly and uniquely identifies the string segment
which the parser has attached a category label, and determines which items are concatenable. As
the yield function of an MCFG rules takes not strings but tuples of strings as arguments, and
returns such, an item’s mapping of categories to the input string is more complex. In Mcfgcky,
the field pos achieves this more complex mapping as a list of spans, where a span represents some
maximal contiguous item contained within an MCFG tuple.

The parametrized type span implements the range of automata we wish to parse.
The Empty and Var types represent categories and portions of categories that are not directly

instantiated by the input string. In the automaton, these types implement epsilon transitions
which generate a symbol without consuming an input symbol. The distinction between Empty and
Var in the MCFG parser repects a distinction made by the Guillamin compiler from MG. A span
with empty string yield could correspond to an MG category which has no string yield, such as
a functional head. It could also correspond to an ad hoc category fashioned by the compiler to
fascilitate such rules as head movement and adjunction. In the former case, we term the empty
span Empty and in the latter case, we term it Var.

The type Wild is a constructor of an index (implemented as integer), reflecting a self-loop in the
automaton that consumes any symbol in the input while producing a fixed symbol in the output.
The type Frag is a constructor of a tuple of indicies, representing a transition from one index to
another in the automaton producing a symbol. The abstraction of a tuple of spans is implemented
in Mcfgcky as a list of spans, as OCaML permits homogeneous lists of arbitrary length.

Overall, the record item type maps a single MCFG category to potentially more than one seg-
ment of the input string, and permits the arguments of MCFG rewrite rules to be non-concatenate.

The field point operationalizes the backpointing system required to fashion a parser from a
recognizer. Throughout parsing, a backpointing hash table is populated in tandem with the chart,
and point simply identifies the key in this table which corresponds to this item. At the end of
parsing, the pointers for items which meet the success criterion are read off, and serve as the starting
points for the backpointing traversal function, checkmcfg or checkmg, which yields derivation trees
corresponding to the MCFG or MG derivation tree, respectively.

Finally, the field prob represents the probability of the item given the input string, which serves
probabilistic parsing.

15

3.2 Inference Rules

Mcfgcky can handle grammars whose rules are unary or binary. As a result of this, Mcfgcky employs
three main inference rules: unaryf, which is unary; left and right, which are binary. left and
right refers simply to which member of the binary rule is in the trigger and which is in the chart,
and do not refer to relative positions in the string. These rules all take as their arity an agenda
og, a grammar g, the pointer hashtable phash, a trigger item trigger, and the chart chart.

let left og g phash trigger chart =

for comp=0 to n in chart

for rule=0 to n in

List.filter (rule’s first rhs argument = trigger.cat) grammar

if List.length (righthandside(rule)) =2 and

trigger.cat = (righthandsides(rule).[0]) and

comp.cat = (righthandsside(rule).[1]]

then f(rule,trigger,comp)::og

else og

left is seen in the above pseudocode to map a given trigger item to all members of the of the
chart and with all rules in the grammar containing the category of the trigger item as first argument
(second argument in right, only argument in unaryf). left,right,unary simply match premises to
pertinent axiom schemata, returning (rule, trigger, comp) triples (or a (rule, trigger) tuple in the
unary case) where the categories of trigger and comp match the right hand side of rule in the
correct order. The final inference is implemented separately as the evaluation of the yield function
f on the (rule, trigger, comp) triple, by the populate, populate2, and concat functions. populate2
simply builds a new item given the (rule, trigger, comp) triple, in the binary case, and populate
does likewise in the unary case. populate2 and populate both include sanity checks, and both use
the concat function to determine the pos field of the new item.

As the pos field of the item is a span list, concat simply takes as arguments lists of spans (or span
list list) and returns their concatenation, a span list; e.g. concat [[Fragment(2,3);Fragment(3,4);
Fragment(4,5)];[Fragment(5,6)]] will return the concatenate [Fragment (2,5);Fragment(5,6)], while
concat [Fragment(2,3);Wild(4,5);Fragment(5,7)] will return [Fragment(2,3);Fragment(4,7)]. spanlistlist
is given a type definition as an anonitem; as OCaML lists are homogenous and of arbitrary length,
the use of the outer list and the temporary data structure enables f to take as input an arbitrary
number of arguments (or equivalently, an n-tuple of arbitrary length)

Recall that a Multiple Context Free Grammar rule has arguments and yield that are tuples
of strings. Whereas the yield function of a context-free grammar rewriting rule conflates category
rewriting and string concatenation, the yield function of a multiple context free grammar combines
the category rewriting and string concatenation operations in a more complex mapping. Revisiting
again the example of a context free grammar rewriting rule...

α→ βγ (14)

16

In a context free grammar, β must map onto a portion of the string which is prior to (left of)
the part of the string which γ maps onto. This is not so in a Multiple Context Free Grammar.

A0 → f [A1, A2, ...Aq] (15)

t7→ t4 t5 t6 [(2, 0)][(1, 0); (0, 0); (1, 1)] (16)

The yield function f is free to interpolate and concatenate the members of its argument tuples
independently. It follows that the MCFG parser must delineate the concatenation function from the
inference rules somewhat, as a given inference rule may not exhibit any instance of concatenation.

3.3 Agenda and Exhauastion Mechanism

3.4 Backpointing

Mcfgcky uses a separate chart to record derivational information needed to print analyses. As each
items is inserted into the main chart, a key,value pair is recorded in the backpointer chart, and the
backpointer key recorded in the main chart item’s backpointer field.

When the exhaustion mechanism closes the chart, and items matching the success criterion are
retrieved, the pointers can be read off the success items and seed the backpointing mechanism.

3.5 Output

In parsing modes, Mcfgcky can output a variety of derivation tree outputs in LaTeX, plain text,
or dot. It can print out either MCFG derivation trees or MG derivation trees, provided the cor-
responding dictionary file from the Guillaumin [2004] is provided for the reverse compilation of
MCFG categories back into MG feature prefixes. It does not at present output MG derived trees.
Mcfgcky also will print out a product-sum graph in both parsing and statistical modes.

In statistical modes, Mcfgcky prints out reports with pertinent information. In the verbose sta-
tistical mode, Mcfgcky prints out the treebank grammar, derivation grammars, inside probabilities,
~h, and fertility matrices, and entropies for each prefix. vech and the fertility matrix could probably
be shunted off into a debugging mode. In the quiet statistical mode, Mcfgcky prints out surprisals,
entropies, and inside probability of the start symbol (prefix probabilities) for each prefix.

3.6 Training

3.7 Testing

Nederhof and Satta [2008] show that the number of iterations to convergence is dependent on
the spectral radius. Convergence can be out of reach in pathological cases with sr ≈ 0.9̄, but
convergence is readily obtainable for sr ≤ 0.7, which generally holds on natural language grammars.

Setting n = 100 should be sufficient for almost all natural language grammars trained from
corpora, but caution is warranted when grammars have large spectral radii. We ran a series of tests
on gazdar.mcfg, which is a quite loopy CFG with a spectral radius of INSERT. 15 show the results
of parses of three and four word prefixes being parsed as n is incremented. The X-axes depict n,
with entropies on the Y-axises. Entropy scores converged out to 16 significant digits around 50 n.

17

Figure 15: Convergence of gazdar.cfg on three and four word prefixes

3.8 Surprisal

3.9 Entropy

4 Implementation

Myqueue implements a functional queue structure used in the agenda mechanism, and Seq (as coded
in Paulson [1996] implements lazy lists used in point.ml to retrieve individual trees from the forest.
Utilities provides data manipulation utilities. Print and Output contain the string-manipulation
and output utilities used in printing different outputs to the toplevel, to the standard out, and to
file.

Item contains the item record type, which uses the string cat type for category labels, the span
type for mapping to the input string, and the integer point type for the backpointing mechanism.
Concat implements the computation of string yield functions, which perform concatenations and
range restrictions, and also contains several boolean check functions which ensure that derived
items are interpretable.

Grammar contains the types related to the mcfg grammar data structure. Mcfgread and Mcfglex
are a lexer/parser combination used for reading in this grammar object from an mcfg file, which is
output by the guillamin compiler.

Rules implements the inference rule schemeta which are used by the parsing engine, while
Mcfgcky contains the parsing engine. Point implements the packed shared forest. Decompile han-
dles reverse compilation from MCFG to MG if desired. Dictlex and Dictread provide a lexer/parser
used to read in a dictionary file provided by the Guillamin compiler. This dictionary file consists of

18

tuples of MCFG categories and their MG interpretations, and is used by Mcfgcky to set the success
criterion and to provide a translation of the MCFG parse into MG.

Fileread/Filelex,Corpread/Corplex, and Pcfgread/Pcfglex all read in unweighted corpora, weighted
corpora, and pcfg for statical mode parsing. Fileread/filelex is also used via batch processing in
parsing mode. Pcfg implements basic structures for probabilistic parsing at training time and test-
time. Train trains up a model from a corpus using Weighted Relative Frequency Estimation over
a treebank generated by the parser over the corpus from the grammar. Pcfglex/Pcfgread read in
an arbitrary PCFG directly. Test implements the testtime functionality of computing intersection
grammars and associated data which are prerequisite for entropy computations. Dcfggraph uses
ocamlgraph to topologically sort the grammar into buckets. Inside computes the inside probability
of catgeories and calculates renormalized probabilities of the intersection grammars. Entropy uses
Grenander’s Theorem and camlgsl to invert a fertility matrix and obtain entropies over probabilistic
grammars.

Print is responsible for printing to standard out and providing string translations of data struc-
tures, while Output assembles reports that are output to a desired file. Dcfgdisplay uses dcfggraph
to output product-sum graphs if desired.

4.1 Utilities, Basic Data Structures, and Input Modules

4.1.1 Module Utilities

Basic utilities for mcfgcky.

4.1.2 Module MyQueue

4.1.3 Module Seq

4.1.4 Module Mcfgread

Read in a Multiple Context Free Grammar in Albro notation.

4.1.5 Module Fileread

Read in an unweighed corpus in basic list format.

4.1.6 Module Corpread

Read in an weighed corpus.

4.1.7 Module Pcfgead

Read in an arbitrary model in probabilistic context free grammar format.

4.2 Parsing Modules

4.2.1 Module Item

An item in our chart is a tuple of a category and its range-restricted string yield. The string yield is
tuple-valued, where each component could either correspond to an actual string, an empty string,
or Kleene star.

type cat = string

Categories are simple strings.

type index = int

19

We represent an item’s position in the string using an index of type int.

type span =

| Var

| Emp

| Wild of index

| Fragment of index * index

| Hyp of index

| Fail

A span is a component of the tuple-valued range-restriction of the string yield. Each span
represents an automaton transition, so that the total string yield represents the sequence of
automaton transitions that are necessary to derive the decorated item. Vars and Emps
represent epsilon transitions in our system; they are distinguished in MCFG parsing because
they have unique status in the MG items that gave rise to them. Vars represent the empty
string yields of functional head categories in the source MG, whereas Emptys represent the
empty string yields of ad-hoc categories introduced solely by the Guillaumin [2004] compiler.

Wilds represent Kleene closures in string yields, and serve to reflect that a given category
may be present in the right context of a prefix. A Fragment (x,y) represents an automaton
transition from index x to index y where y > x. We represent a range-restriction as a
Fragment when that span’s derivation maps on to at least one instance of a real string.
Thus, our string concatenation rules define an algebra (a semiring) over tuples of strings.
Loosely, we realize (+) as string concatenation, and (*) as a function over tuples of strings
yielding tuples of strings. The concatenation of a Fragment (x,y) and a Wild (y) is
Fragment (x,y), where Wild(y) is a zero-item for concatenation. A (linear, non-erasing)
string yield function for a unary rules which takes the 0th member of a child’s string yield is
the null-item for (*).

type item = {
cat : cat ;

pos : span list ;

}
An item is a category situated over (range-restricted by) an n-tuple of spans in the string.
This homogenous n-tuple of spans is implemented as a list of spans. An item is
implemented as a record with category (cat) and string yield (pos) fields.

4.2.2 Module Grammar

Grammar.ml implements the data types and functions used in Multiple Context Free Grammar.
Whereas a Context Free Grammar production conflates a symbol-forming operation and a concate-
nation operation, MCFG divorces abstract and concrete syntax by allowing arbitrary string yield
functions with more powerful operations than concatenation. The domain and range of (Linear)
MCFG string yield functions is defined over yields of type tuple of strings; this is guranteed by the
linearity of (L)MCFG without which, MCFG would be Turing-equivalent.

type daughterID = int

20

type member of tupleID = int

type componentSpec = daughterID * member of tupleID

type rewriter =

| Func of componentSpec list list

| Terminal

We implement our string yield functions according to the Albro notation. For a rule A →
BC[(0, 0); (1, 0)][(0, 1)], we evaluate the string yield ofA as a tuple with two components (where each
component is indicated in brackets), where the first component is the concatenation of respective
0th members of string yields of B and C, and the second component is the 1th component of
the 0th category, B. When A is a preterminal, we indicate as such with the category Terminal.
daughter ID indicates which category is referred to; member of tupleID indicates which component
of some category’s string yield is referred to; such that componentSpec can uniquely indicate a span
in B or C. Rewriter implements the tuple-valued rewrite function as a list of componentSpec.

type mcfgrule = Item.cat list * rewriter

An mcfgrule has abstract syntax (of type ’cat list’, where we always take the 0th member of the
list to refer to the parent, and the other members of the list to refer to the children) and concrete
syntax (of type rewriter).

type pmcfg = mcfgrule list

A (Parallel) Multiple Context Free Grammar is a list of mcfgrules.

val tupler : ’a * rewriter -> rewriter

Given a mcfgrule, obtain the string yield function.

val cats of rule : ’a * ’b -> ’a

Given a mcfgrule, obtain the abstract syntax as a list of categories.

val lhs : ’a list * ’b -> ’a

Given a mcfgrule, obtain the parent category (left hand side) of the rule.

val rhs : ’a list * ’b -> ’a list

Given a mcfgrule, obtain the children categories (right hand side) of the rule.

type opt mcfg = {
parent ord : (Item.cat, mcfgrule) Hashtbl.t ;

lchild ord : (Item.cat, mcfgrule) Hashtbl.t ;

rchild ord : (Item.cat, mcfgrule) Hashtbl.t ;

onchild ord : (Item.cat, mcfgrule) Hashtbl.t ;

ispreterm ord : (bool, mcfgrule) Hashtbl.t ;

}
Implement an optimized MCFG object where any quantity of interest asked for by rules.ml is

indexed at training time and retirevable in constant time at testing time. Another optimization
would be to index by linearization arity as well; this would be relatively easy to implement, but
may not be of great use: our MCFG categories generally have constant lineaarization arity.

val orderbyparent :

(’a list * ’b) list -> (’a, ’a list * ’b) Hashtbl.t -> unit

Populate a hash table where each rule is indexed by parent.

val orderbylchild :

(’a list * ’b) list -> (’a, ’a list * ’b) Hashtbl.t -> unit

21

Populate a hash table where each rule is binary and indexed by the left child.

val orderbyrchild :

(’a list * ’b) list -> (’a, ’a list * ’b) Hashtbl.t -> unit

Populate a hash table where each rule is binary and indexed by the right child.

val orderbyonchild :

(’a list * ’b) list -> (’a, ’a list * ’b) Hashtbl.t -> unit

Populate a hash table where each rule is unary and indexed by the only child.

val orderbypreterm :

(string list * rewriter) list ->

(bool, string list * rewriter) Hashtbl.t -> unit

Populate a hash table where each rule is a preterminal production, indexed by the preterminal.

exception WeirdRule of mcfgrule

Exception for abberant mcfg rules.

class grammar : pmcfg ->

object

method get rules for : Item.cat -> Grammar.mcfgrule list

Get any rules where category is a parent.

method get rules left child : Item.cat -> Grammar.mcfgrule list

Get any binary rules where category is a left child.

method get rules right child : Item.cat -> Grammar.mcfgrule list

Get any binary rules where category is a right child.

method get rules only child : Item.cat -> Grammar.mcfgrule list

Get any unary rules where category is a child.

method get all empty preterm : Item.cat list

Get any preterminals whose string yield is empty.

method get all nonempty preterm : Item.cat list

Get any preterminals whose string yield is non-empty.

method get all empty : Item.cat list

Get any preterminals whose string yield is empty (deprecated).

method get all head : Item.cat list

Get any preterminals whose string yield is non-empty (deprecated).

method get all cats : Item.cat list

Get all categories in the grammar.

method get start symbol : string list

end

Get the start symbol of the grammar.

val opt gram : Grammar.opt mcfg

The optimized grammar object.

22

val unopt gram : Grammar.pmcfg

Return the list-formatted unoptimized grammar.

method get all rules : Grammar.pmcfg

Get all the rules in the grammar.

4.2.3 Module Point

Implements the backpointer system and subsumption check, which we use to construct a packed
parse forest.

type point =

| Term

| Unary of Item.item * Grammar.componentSpec list list

| Binary of Item.item * Item.item * Grammar.componentSpec list list

Like in CFG, a pointer gives us the abstract syntax used to enter some category, by
referring to either one or two parents or a terminal. Unlike CFG, it should also indicate the
concrete syntax used to form it, by including the string yield function which was used.

type sitrule = Item.item * point

Situated rules are non-terminals decorated or range restricted with their string yields. This
could be cleaned up by having one parameterized type, which is either Situated of Item.item
* point, or Nonsituated of Item.cat * catlist.

type sitcfg = sitrule list

type dcfgrhs =

| Bin of Item.cat * Item.cat

| Un of Item.cat

| T

A Dcfg gives us unsituated rules back from the situated parse forest, for when we need parse
trees to train rules with unsituated categories. This works effectively, but is conceptually
clunky.

type dcfgrule = Item.cat * dcfgrhs

type dcfg = dcfgrule list

exception StrangeChart

Exception for when our chart is strange.

val crossproduct : ’a list -> ’b list -> (’a * ’b) list

Cross product of two lists.

val string of span : Item.span -> string

val sitcfgOfChart : (Item.item, point) Hashtbl.t -> Item.item -> sitcfg

Obtain the dcfg from a chart given the pointer hash table and the current parent/key to
work on.

23

val wlength : string -> int

The length of the sentence that the situated start symbol needs to span over.

val sit start symbol : Item.index -> Item.item

Given wlength, return the situated start symbol.

val gr sort : (Item.item * ’a) list -> (Item.item * ’a) list

Guarantee that items are sorted longest to shortest, with start symbol first. Not strictly
necessary, but should speed processing.

val sortedcfgOfChart :

(Item.item, point) Hashtbl.t -> Item.item -> sitrule list

Sorted pcfg from chart according to the above.

val desitCFG : (Item.item * point) list -> (Item.cat * dcfgrhs) list

For a situated context free grammar, return the desituated dcfg version

val catlist of dcfg : (’a * dcfgrhs) list -> ’a list

val catarray of dcfg : (’a * dcfgrhs) list -> ’a array

Return the list of categories in a dcfg. Used to index the momentum matrix.

val abstract : Item.item -> Item.cat

Desituate a situated category.

val abstract rule : point -> dcfgrhs

Desituate a situated rule.

val range : int -> int -> int list

A range operator, which I’m sure is implemented elsewhere

val success items : string -> Item.item list

Given a string, return a list of successful situated start symbols according to the approp
string length

class forest :

object

val point hash : (Item.item, Point.point) Hashtbl.t Pervasives.ref

A hashtable of pointers which provides the main functionality of the packed parse
forest. In trunk, this is a standalone hash table, not bundled into the forest object.

val subsumptionok : ’a -> (’a, ’b) Hashtbl.t -> bool

Boolean check for whether parent item is already in chart; if it is, include the new
pointer but don’t add the item again.

val (@@) : ’a Seq.seq -> ’a Seq.seq -> ’a Seq.seq

val (@::) : ’a -> ’a Seq.seq -> ’a Seq.seq

val lcrossproduct : ’a Seq.seq -> ’b Seq.seq -> (’a * ’b) Seq.seq

24

val treesOfChart :

(Item.item, point) Hashtbl.t ->

Item.item -> Item.item Utilities.stufftree list

Operators for lazily extracting a sample of parse trees out of the forest. Could be
improved.

4.2.3.1 Experimental Kilbury Parsing

val cathash : (Item.cat, Item.item) Hashtbl.t Pervasives.ref

val chart : Item.item list Pervasives.ref

val grams of chart : (Item.item, Point.sitcfg) Hashtbl.t

method cats : (Item.cat, Item.item) Hashtbl.t

method pointers : (Item.item, Point.point) Hashtbl.t

method get sit cats : Item.cat -> Item.item list

method subsume ok : Item.item -> bool

method add pointer : Item.item -> Point.point -> unit

method add cat : Item.item -> unit

method add to chart : Item.item -> Item.item list

method get chart : Item.item list

method incr chart : unit

method incr pointers : unit

method incr cats : unit

method hash grams : string -> unit

method sitgram : Item.item -> Point.sitcfg

end

4.2.4 Module Concat

Concat.ml implements concrete syntax via string yield functions for MCFG.

type anonitem = Item.span list list

An anonitem is an intermediate representation of the string yield function.

4.2.4.1 Integrity Checks

val reasonable ok : Item.span -> bool

Check that indices on a given range restriction component (span) are sensible. Frag(x,y)
requires 0 ≤ x ≤ y. Wild(x) requires 0 ≤ x.

val concatenable ok : Item.span list -> bool

Check that a given instance of concatenation is sensible. A concatnenation [(x, y); (x1, y1...]
requires that y = x1, etc.

25

val overlap : Item.span -> Item.span -> bool

val overlap_ok : Item.span list -> bool

Overlap ok applies overlap to deliver T iff candidate range restrictions don’t have
overlapping spans, F o/w. A range restricted string yield (Frag(x, y), F rag(x1, y1)) requires
that ¬∃z.(x ≤ z ≤ y) ∧ (x1 ≤ z ≤ y1)

4.2.4.2 Sanity Concatenation Checks

val wholerule ok : ’a list list -> anonitem -> bool

T iff ensure that entire mcfg rule is used in creating item, and rule was used non-erasingly,
F o/w.

val concat fail : Item.span list -> bool

Checks to see if item contains the Fail itemlet, created by bad, incomplete concatenation.

exception ConcatFail of string

Exception thrown if concatenation fails, to be caught safely by rules.ml which will not
populate the chart in this instance.

4.2.4.3 Concatenation Functions

val concat : Item.span list -> Item.span

; is the concatenation function, defined on range restrictions. Concatenation is not a
total function, as things ot be concatenated need to be adjacent (for
[Frag(x, y);Frag(x1, y1], concatenation is valued only when y = x1). Given a span list,
concatenates into a single span. Nonsense concatenations should return the Fail span type,
propogating information up to the sanity check

Emp and Var are ’free’ in the string and place no restrictions on where in the string they
can be concatenated in; thus they are cached out at concatenation.

exception GrabNth of string

val grab : Grammar.componentSpec -> anonitem -> Item.span

Given an anonitem, returns the nth member of the nth tuple. Throws GrabNth is member
is out of range of the arity of the tuple.

val mapconcat : Grammar.componentSpec list -> anonitem -> Item.span

Map concatenation across all the gets in a single spec list– eg (0,1);(1,0). Each instance
of mapconcat builds one component of the parent’s string yield tuple.

val f : Grammar.componentSpec list list -> anonitem -> Item.span list option

The yield function maps mapconcat across the anonitem with the whole rewrite–eg
(0,1);(1,0)0,0.

26

4.2.5 Module Rules

Rules.ml defines the inference rules we use to populate our chart, faciliating Shieber et al. [1995]-
style parsing as deduction. This modularity would allow relatively easy adaption of all the statistical
stuff to say, Earley parsing. It also handles the actual population of the chart.

val unfunc : Grammar.rewriter -> Grammar.componentSpec list list

Unbox the rewriter type. Doing this sparingly instead of at runtime every time a string yield
function is called actually yields a signifcant performance gain.

4.2.5.1 Chart Population Functions

val populate2 :

Item.cat list * Grammar.rewriter ->

Item.item ->

Item.item ->

< add pointer : Item.item -> Point.point -> ’a;

add to chart : Item.item -> ’b list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

’b list

Populate2 factors out population, item checking, and string yield evaluation from the left
and right inference rules. It applies the ’concrete syntax’ by calling concat.ml with the
specified yield function. It checks as well that the string yield function is sensible before
sending it off to concat.ml.

val populate :

Item.cat list * Grammar.rewriter ->

Item.item ->

< add pointer : Item.item -> Point.point -> ’a;

add to chart : Item.item -> ’b list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

’b list

Populate2 factors out population, item checking,a nd string yield evaluation from the unary
inference rules. It applies the ’concrete syntax’ by calling concat.ml with the specified yield
function. It checks as well that the string yield function is sensible before sending it off to
concat.ml.

val is nonzero prob :

Item.cat list * ’a -> (Item.cat, Pcfg.pcfgrule) Hashtbl.t option -> bool

Boolean check to ensure that items at training time have nonzero probability. This is
well-tested, and does not effect accuracy at the expense of performance so long as inside
renormalization is used.

val non erasing bin : ’a list -> ’b list -> Grammar.rewriter -> bool

27

A cheap filter to reduce calls to concat.ml, which implements a cheap approximate and
conservative (false negatives but not false positives) check that the rule is non-erasing.
Checks that comps in x + comps in y = linearzation arity of rule r.

val non erasing un : ’a list -> Grammar.rewriter -> bool

A cheap filter to reduce calls to concat.ml, which implements a cheap approximate and
conservative (false negatives but not false positives) check that the rule is non-erasing.
Checks that #comps in x + #comps in y = linearzation arity of rule r.

4.2.5.2 Inference Rules

val left :

< get rules left child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

.. > ->

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option ->

< add pointer : Item.item -> Point.point -> ’a;

add to chart : Item.item -> ’b list;

get sit cats : Item.cat -> Item.item list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

Item.item -> ’c -> ’b list

Given the left member of a rhs binary rule, map over all pertinent rules and all pertinent
items with the correct right member.

val right :

< get rules right child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

.. > ->

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option ->

< add pointer : Item.item -> Point.point -> ’a;

add to chart : Item.item -> ’b list;

get sit cats : Item.cat -> Item.item list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

Item.item -> ’c -> ’b list

Given the right member of a rhs binary rule, map over all pertinent rules and all pertinent
items with the correct left member

val unaryf :

< get rules only child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

.. > ->

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option ->

< add pointer : Item.item -> Point.point -> ’a;

add to chart : Item.item -> ’b list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

Item.item -> ’c -> ’b list

28

Given the only child of a rule, map over all pertinent unary rules with this member.

4.2.5.3 Ground Axia/Initial Chart Population

val empties :

< get all empty : Item.cat list; get all head : Item.cat list; .. > ->

’a -> < add pointer : Item.item -> Point.point -> ’b; .. > -> Item.item list

Populate all empties.

val can hypo : string -> bool

Populate the chart based on any ellipsis cues (so far these are indicated with).

val items of just string :

< get all nonempty preterm : Item.cat list;

get rules only child : string -> (Item.cat list * ’a) list; .. > ->

string ->

< add pointer : Item.item -> Point.point -> ’b; .. > -> Item.item list

Populate all nonterminals for the string.

4.2.5.4 Kilbury Style Inference Rules

val items of token :

< get all nonempty preterm : Item.cat list;

get rules only child : string -> (Item.cat list * ’a) list; .. > ->

string ->

< add pointer : Item.item -> Point.point -> ’b; .. > ->

Item.index -> Item.item list

Inference rules for kilbury. Experimental and not accurate.

val populate2 up :

Item.cat list * Grammar.rewriter ->

Item.item ->

Item.item ->

< add pointer : Item.item -> Point.point -> ’a;

add to chart : Item.item -> ’b list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

’c -> ’b list

Binary chart population for kilbury. Experimental and not accurate.

val populate up :

Item.cat list * Grammar.rewriter ->

Item.item ->

< add pointer : Item.item -> Point.point -> ’a;

add to chart : Item.item -> ’b list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

’c -> ’b list

29

Unary chart population for kilbury. Experimental and not accurate.

val left up :

< get rules left child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

.. > ->

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option ->

’a ->

< add pointer : Item.item -> Point.point -> ’b;

add to chart : Item.item -> ’c list;

get sit cats : Item.cat -> Item.item list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

Item.item -> ’d -> ’c list

Binary inference rule for kilbury. Experimental and not accurate.

val right up :

< get rules right child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

.. > ->

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option ->

’a ->

< add pointer : Item.item -> Point.point -> ’b;

add to chart : Item.item -> ’c list;

get sit cats : Item.cat -> Item.item list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

Item.item -> ’d -> ’c list

Binary inference rule for kilbury. Experimental and not accurate.

val unaryf up :

< get rules only child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

.. > ->

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option ->

’a ->

< add pointer : Item.item -> Point.point -> ’b;

add to chart : Item.item -> ’c list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

Item.item -> ’d -> ’c list

Unary inference rule for Kilbury. Experimental and not accurate.

val delid : Item.item * Item.item -> bool

Experimental Deletion under Identity Check for Conjunction Parsing. Untested.

val noncyclic : Item.span list * Item.span list -> bool

Experimental Cyclicity Check for Conjunction Parsing. Untested.

30

val is hyp : Item.item -> bool

Experimental Hypothesis Check for Conjunction Parsing. Untested.

val rel hyp : (’a, Item.item) Hashtbl.t -> ’a -> Item.item list

val left discharge :

’a ->

’b ->

< add pointer : Item.item -> Point.point -> ’c;

cats : (Item.cat, Item.item) Hashtbl.t;

points : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

Item.item -> ’d -> Item.item list

Experimental Disharge Rule for Hypothesis/Conjunction Parsing. Untested.

val right discharge :

’a ->

’b ->

< add pointer : Item.item -> Point.point -> ’c;

cats : (Item.cat, Item.item) Hashtbl.t;

points : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. > ->

Item.item -> ’d -> Item.item list

Experimental Disharge Rule for Hypothesis/Conjunction Parsing. Untested.

val items of string :

< get all empty : Item.cat list; get all head : Item.cat list;

get all nonempty preterm : Item.cat list;

get rules only child : string -> (Item.cat list * ’a) list; .. > ->

string ->

< add pointer : Item.item -> Point.point -> ’b; .. > -> Item.item list

4.2.6 Module Mcfgcky

The main parsing module of mcfgcky.

val distribute :

(Item.item -> ’a -> ’b list) list ->

Item.item -> < get chart : ’a; .. > -> ’b list

Distributes a trigger throughout the chart.

val distribute debug :

(’a list -> ’b) ->

(Item.item -> ’c -> ’a list) list ->

Item.item -> < get chart : ’c; .. > -> ’a list

Distributes a trigger throughout the chart with debugging output.

31

val exhaust :

’a ->

< add cat : Item.item -> ’b; get chart : ’c; subsume ok : Item.item -> bool;

.. > ->

Item.item Myqueue.BatchedQueue.queue ->

(Item.item -> ’c -> Item.item list) list -> ’c

Exhaustion mechanism, proceeds until the chart is empty, which to the extent the algorithm
is valid and complete will gives us the closure of the ground items under the inference rules.

val exhaust debug :

’a ->

< add cat : Item.item -> ’b; get chart : ’c; subsume ok : Item.item -> bool;

.. > ->

(Item.item list -> ’d) ->

Item.item Myqueue.BatchedQueue.queue ->

(Item.item -> ’c -> Item.item list) list -> ’c

Exhaustion mechanism with debugging output.

val parse debug :

< get all empty : Item.cat list; get all head : Item.cat list;

get all nonempty preterm : Item.cat list;

get rules left child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules only child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules right child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

.. > ->

string ->

(< add cat : Item.item -> ’b; add pointer : Item.item -> Point.point -> ’c;

add to chart : Item.item -> Item.item list; get chart : ’d;

get sit cats : Item.cat -> Item.item list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. >

as ’a) ->

’a

Given a grammar g, sentence string w, and point side-table, run the parsing engine without
backpointer retrieval and with debugging statements.

val parse :

< get all empty : Item.cat list; get all head : Item.cat list;

get all nonempty preterm : Item.cat list;

get rules left child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules only child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules right child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get start symbol : ’a; .. > ->

string ->

(< add cat : Item.item -> ’c; add pointer : Item.item -> Point.point -> ’d;

32

add to chart : Item.item -> Item.item list; get chart : ’e;

get sit cats : Item.cat -> Item.item list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. >

as ’b) ->

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option -> ’b

Given a grammar g, sentence string w, and point side-table, parse with the appropriate
decompilation of backpointers. Not used in statistical modes.

val parse gen :

< get all empty : Item.cat list; get all head : Item.cat list;

get all nonempty preterm : Item.cat list;

get rules left child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules only child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules right child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

.. > ->

string ->

(< add cat : Item.item -> ’b; add pointer : Item.item -> Point.point -> ’c;

add to chart : Item.item -> Item.item list; get chart : ’d;

get sit cats : Item.cat -> Item.item list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. >

as ’a) ->

’e -> ’f -> (Item.cat, Pcfg.pcfgrule) Hashtbl.t option -> ’a

Given a grammar g, sentence string w, point side-table and a training pcfg, parse without
appropriate decompilation of backpointers for use in statistical modes.

4.2.6.1 Experimental Kilbury Stuff

val all points : (’a, ’b) Hashtbl.t -> (’a * ’b) list

val parse up :

< get all nonempty preterm : Item.cat list;

get rules left child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules only child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules right child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

.. > ->

Item.cat ->

(< add cat : Item.item -> ’b; add pointer : Item.item -> Point.point -> ’c;

add to chart : Item.item -> Item.item list; get chart : ’d;

get sit cats : Item.cat -> Item.item list;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. >

as ’a) ->

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option -> Item.index -> ’a

Experimental Kilbury stuff, doesn’t work yet.

33

val parse kilbury gen :

< get all empty : Item.cat list; get all head : Item.cat list;

get all nonempty preterm : Item.cat list;

get rules left child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules only child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules right child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get start symbol : ’a; .. > ->

string ->

(< add cat : Item.item -> ’c; add pointer : Item.item -> Point.point -> ’d;

add to chart : Item.item -> Item.item list; get chart : ’e;

get sit cats : Item.cat -> Item.item list; hash grams : string -> ’f;

incr cats : ’g; incr chart : ’h; incr pointers : ’i;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. >

as ’b) ->

’j -> ’k -> (Item.cat, Pcfg.pcfgrule) Hashtbl.t option -> ’b

Experimental Kilbury stuff, doesn’t work yet.

val parse kilbury :

< get all empty : Item.cat list; get all head : Item.cat list;

get all nonempty preterm : Item.cat list;

get rules left child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules only child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get rules right child : Item.cat -> (Item.cat list * Grammar.rewriter) list;

get start symbol : ’a; .. > ->

string ->

(< add cat : Item.item -> ’c; add pointer : Item.item -> Point.point -> ’d;

add to chart : Item.item -> Item.item list; get chart : ’e;

get sit cats : Item.cat -> Item.item list; incr cats : ’f;

incr chart : ’g; incr pointers : ’h;

pointers : (Item.item, Point.point) Hashtbl.t;

subsume ok : Item.item -> bool; .. >

as ’b) ->

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option -> ’b

Experimental killbury stuff, doesn’t work yet.

4.3 Statistical Parsing

4.3.1 Module Pcfg

Pcfg.ml implements basic types and functions for probabilistic parsing.

type fertility matrix = Item.item array * float array array

A fertility matrix is an array matrix of floats indexed by situated items, where the member
of the matrix indexed by (x,y) indicates the expected number of y obtained in one rewriting
of x, for a probabilistic grammar.

34

exception RowZero

Throw RowZero when a row of the fertility matrix is entirely zeroes.

type bucketed key = {
category : Item.item ;

index : int ;

}
For inside probability functions, we have to divide the pcfg into ’buckets’, where each
’bucket’ is a strongly connected component of the pcfg’s corresponding graph structure. A
bucketed key tells us which bucket of the pcfg the item of interest is located in.

type iteration = int

For inside probability functions, we want to know which ’iteration’ of the inside algorithm a
value was evaluated at.

type bucketed inside hash = (bucketed key, iteration * float) Hashtbl.t

Implements a memomoized data structure that permits us to record iterations of the loopy
inside algorithm, and look them up in constant time when we need values from a particular
iteration or bucket.

type pcfgrule = {
rhs : Point.dcfgrhs ;

mutable count : float ;

mutable prob : float option ;

}
A rule type for training time. Works efficiently but is conceptually clunky, and could be
combined with the test time probabilist ruletype Pcfg.renormed probcfgrule, as a
parameterized type.

type pcfg = (Item.cat, pcfgrule) Hashtbl.t

A PCFG is a hashtable of pcfgrules indexed by parent categories.

type renorm cfgrule = {
rrhs : Point.point ;

mutable prior : float option ;

mutable postr : float option ;

}
A rule type for testing time. Works efficiently but is conceptually clunky, and could be
combined with the test time probabilist ruletype Pcfg.probcfgrule, as a parameterized type.

type renorm cfg = (Item.item, renorm cfgrule) Hashtbl.t

A renorm cfg (sic) is a hashtable of renorm cfgrules pcfgrules indexed by parent items,
which are situated.

35

type t bank = {
test sitcfg : Point.sitcfg ;

mutable test pcfg : renorm cfg option ;

mutable inside : bucketed inside hash option ;

mutable fmatrix : fertility matrix option ;

mutable invert : fertility matrix option ;

mutable entropy : (Item.item, float) Hashtbl.t option ;

mutable hvector : (Item.item, float) Hashtbl.t option ;

}
For a particular situated forest, keep around all of the pertinent data structures in a record.

type testbank = ((string * Item.item) * t bank) list

List all the intersection probabilistic grammars and t banks by prefix per sentence.

val catarray of pcfg : (’a, ’b) Hashtbl.t -> ’a array

Retrieve the array of categories in a probabilistic context free grammar.

val fmatrix of training pcfg :

(Item.cat, pcfgrule) Hashtbl.t -> Item.cat array * float array array

Obtain the fertility matrix of the training grammar, for eigenvalue checks and computing
entropy of the training pcfg.

val fmatrix of pcfg :

(Item.item, renorm cfgrule) Hashtbl.t ->

Item.item array * float array array

Obtain the fertility matrix of an intersection pcfg.

4.3.2 Module Train

Train up the corpus-minitreebank for -i mode. Also handles the reading in of pcfg, most of which
is done in pcfglex.mll/pcfgread.mly

exception Logzero

Exception if log is taken of 0.0.

exception NegLog of float

Exception if log is taken of a negative number.

type s bank = {
weight : float ;

training sitcfg : Point.sitcfg ;

mutable training cfg : Point.dcfg option ;

}
Basic record type that bundles information we need for training on a particular sentence in a

treebank.

type revprob bankrule = {
rcount : float ;

36

rprob : float ;

}
type revprob bankcfg = (Item.cat * Point.dcfgrhs, revprob bankrule) Hashtbl.t option

Optimized PCFG type where a rule probability can be indexed by children for lookup in constant
time. Used by inside.ml. Could be hidden behind a fancier pcfg object, but doesn’t create much
clunkiness in practice (inside.ml only sees this representation of the pcfg).

type train = {
sbank : (string, s bank) Hashtbl.t ;

mutable by parent : (Item.cat, Pcfg.pcfgrule) Hashtbl.t option ;

mutable by rule : (Item.cat * Point.dcfgrhs, revprob bankrule) Hashtbl.t option ;

}
Basic record type of a pcfg trained off of a single sentence. A PCFG for an entire treebank can

be extracted from all of these sentences easily.

val read pcfg : string -> train -> unit

Directly read in a training pcfg.

val parse train :

string ->

(’a ->

string ->

(< pointers : (Item.item, Point.point) Hashtbl.t; .. > as ’b) ->

’c -> (’d, ’e) Hashtbl.t -> ’f option -> ’g) ->

’a -> ’b -> ’c -> ’h -> train -> string -> unit

Train up the corpus-minitreebank for -i mode. Requires an initialized parse forest (empty
chart), an empty grammar object, and checking functions provided by decompile.ml to train
on a weighted corpus. Uses simple weighted relative frequency estimation (Chi 1999).

val countpcfg init :

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option ->

Point.dcfg -> float -> (Item.cat, Pcfg.pcfgrule) Hashtbl.t option

Increments counts across the treebank on a treebank-level pcfg object from the sentence-level
information.

val totalcatn : (’a, Pcfg.pcfgrule) Hashtbl.t -> ’a -> float

Sum across all trees in treebank to obtain a count for the number of rules with parent ’a, for
the denominator in weighted relative frequency estimation.

val relcount : (’a, Pcfg.pcfgrule) Hashtbl.t -> ’a -> Point.dcfgrhs -> float

For a given rhs (point.dcfgrhs) and a given parent (’a), return the number of counts of that
rule across the treebank.

val relfreq : (’a, Pcfg.pcfgrule) Hashtbl.t -> ’a -> Point.dcfgrhs -> float

Find the relative frequency of a rule in the grammar, according to the number of times the
parent A (’a) → B (Point.dcfgrhs) found divided by the total count of rhs occurences of A.

val relprobpcfg init : (’a, Pcfg.pcfgrule) Hashtbl.t -> unit

37

Populate the pcfg’s hash table object with one relative-frequency estimated rule.

val pcfg of train init : ’a -> train -> unit

Initialize the pcfg object by finding all relative frequencies of all rules. Desituate dcfgs,
compile and prob treebank rules in one step.

val trainf :

bool ->

string ->

’a ->

’b ->

(’c ->

string ->

(< pointers : (Item.item, Point.point) Hashtbl.t; .. > as ’d) ->

’e -> (’f, ’g) Hashtbl.t -> ’h option -> ’i) ->

’c -> ’d -> ’e -> ’j -> ’k -> string -> train -> unit

A higher order training function parameterized by arguments, to pass in to treebank class.
The parse can be agnostic as to which way it was trained.

class treebank : (train -> ’a) -> ’b ->

object

val optbank : Train.train

Our main unoptimized treebank structure which is hidden behind the optimized treebank
object.

method prob by rule : Item.cat * Point.dcfgrhs -> float

method has par : Item.cat -> bool

Treebank object method which defines a relation which is T if parent is in the grammar, F
o/w.

method has rule : Item.cat * Point.dcfgrhs -> bool

method pcfg : (Item.cat, Pcfg.pcfgrule) Hashtbl.t option

end

An optimized pcfg object.

type parsorted drule = {
pindex : int ;

size : int ;

pdefcat : Item.item ;

ppar : Item.item ;

prhs : Point.point ;

}
This is for indexing rules by their right hand side to be used by inside.ml, enabling these
rules to be sorted into buckets.

38

type parsorted dcfg = (Item.item, parsorted drule) Hashtbl.t

The actual representation of the pcfg which inside.ml sees. This is necessitated partially by the
function in ocamlgraph which does our topological sorting (scc array), and partially the kind of
iteration desired through the sort output, where we need an index and index item for each list.

val index dhash init :

(Dcfggraph.D.vertex * Point.point) list ->

(Dcfggraph.D.vertex, parsorted drule) Hashtbl.t -> unit

Initialize the optimized pcfg representation which inside.ml sees.

4.3.3 Module Inside

Using the treebank grammar and the testtime interesection grammar, computes inside probabilities
for each category in the intersection grammar to renormalize that grammar to find the weighted
intersection. Compute inside probabilities of all categories in the intersection grammar, and then
find the renormalized, situated probability of a rule by:

Because of recursion, a category can contribute inside probability to itself, so must find the limit
of the inside probability for each non-terminal. Goodman [1999] shows us this is doable–sort the
grammar into strongly connected components, the inside prob of a category C in a bucket B is the
suprememum of its value in the inside semiring over B. Then iterate through buckets in topological
order, finding the limit of all values in the bucket before moving on.

STRATEGY:
Assuming you call with s each time, and you iterate progressively up., a memoized value is

accessible if all of the following hold:
Assumption 1. Previous buckets are static. The grammar’s graph structure can be sorted into

its strongly connected components. Assumption 2: You can iterate the inside computation within
a given bucket to reach the supremum, then proceed on to the next bucket.

Then we proceed on a memoized, loopy version of the inside algorithm, in which we work
in topological order of the buckets. In general, we memoize the inside algorithm by working
top down then bottom up. For a given category A in training pcfg R and with productions
A → B1C1, A → B2C2..., β(A) depends on probabilities in R and β(B1), β(C1).... If we have no
appropriate inside probability value for A in cache, we recur into children and determine the inside
probability of children.

For the bucketed, iterative version of this algorithm that can treat looping buckets, we only
need to check the value for the most recent iteration of some category, and then determine if that
value is appropriate. If a category is its own child, the correct iteration to retrieve for calculating
Ai,j is Ai,j−1. If a category only depends on values outside its bucket, it necessarily depends on
previous bucket, since we have topologically sorted the buckets and we are working through the
buckets bottom-up. Thus, we can compute its inside probability ’statically’, because the inside
probabilities of those children aere guaranteed not to change, by Assumptions 1 and Assumptions
2.

If the inside probability of a category A depends on the inside probability of a child B in the
same looping bucket i as it, then we iterate through the bucket because the value of β(A) depends
on β(B) and vice versa. We proceed by first computing a static value for B which depends only
on categories outside i, then iterate through i so that β(Ai,j) depends on β(Bi,j), and β(Bi,j+1)
depends on β(Ai,j). This can happen when B is what we term the ’entry item’ for i; if our grammar
is topologically sortable, then each bucket has such an entry item. This is not guaranteed in general

39

(it is what Goodman [1999] terms linear solvability), but in practice our grammars are sortable
this way. We then only need to have two kinds of dynamic inside probability computation; one
for non-entry items, which require either values from the same bucket and same iteration, or static
values from outside the bucket, and one for entry items, which require values from the same bucket
and the previous iteration, or static values from outside the bucket. It is then only necessary to
ever keep at most two iterations of a bucket around.

We can factor out the control flow of obtaining an appropriate inside value from the inside
algorithm itself, and that is exactly what we do. The current design does not use a stopping
criterion other than a set number of iterations, as a more sophisticated stopping criterion caused
problems, and was eliminated.

exception Logzero

Exception for logarithms of zero.

exception NegLog of float

Exception for logarithms of negative number. Both of these exceptions are redundant on train-
ing.ml.

val maxtup : (int * float) list -> int * float

Used for finding the maximum iteration number in a list of buckets.

exception FirstRecurrence

Exception for when the value we need is the entry item.

val abstract cat : Item.item -> Item.cat

Extract a category from an item, probably redundant on operations in dcfg.ml.

val all abstract : Item.item * Point.point -> Item.cat * Point.dcfgrhs

Extract a rule from a situated rule, probably redundant on operations in dcfg.ml.

exception SubNormal

Exception which should raise if our values are every subnormal (if they ever lose precision).
They never do. Take that log probs.

exception ImpossProb of string

Exception if our value is ever greater than 1.0, which because there is so much recursion, could
result in a lot of chaos. This was caused by inprecise control flow in a previous version, but now
never occurs.

exception NonsenseRetrieval

Value that you wanted from hash doesn’t exists. Suggests incorrect control flow.

val inside complexiter :

Item.item ->

(Pcfg.bucketed key, int * float) Hashtbl.t ->

< has rule : Item.cat * Point.dcfgrhs -> bool;

prob by rule : Item.cat * Point.dcfgrhs -> float; .. > ->

(Item.item, Train.parsorted drule) Hashtbl.t -> int -> int -> unit

Iterates the loopy inside algorithm over a particular bucket, one iteration. Control flow which
proceeds in topological order over the buckets is enforced elsewhere, as is the stoping criterion.

val print inside : (Pcfg.bucketed key, int * float) Hashtbl.t -> unit

Print some inside values.

40

val list of terms : (’a, Train.parsorted drule) Hashtbl.t -> (’a * int) list

Obtain a list of terminals from the hashtable. Probably redundant.

val inside complex bucket :

Item.item ->

(Pcfg.bucketed key, int * float) Hashtbl.t ->

< has rule : Item.cat * Point.dcfgrhs -> bool;

prob by rule : Item.cat * Point.dcfgrhs -> float; .. > ->

(Item.item, Train.parsorted drule) Hashtbl.t -> int -> int -> unit

Iterate as desired over a particular bucket.

val maxbucket : (’a, Train.parsorted drule) Hashtbl.t -> int

Functions to get info about bucket structure

val bucket indices : (’a, Train.parsorted drule) Hashtbl.t -> int list

Returns a list of int*bool tuple, where int is the index and true indicates the item recurred
in the original. Used to derive a list of bucket indices that actually exist.

val parents of buckets :

(’a, Train.parsorted drule) Hashtbl.t -> (int * Item.item) list

Return the parents of every bucket, where the parent is a ’start symbol’ for that bucket.
The particular identity of the start symbol doesn’t matter so much, as we will immediately
recur down to the entry item, which is readily identifiable at run time.

exception SafeNth of int

val safenth : ’a list -> int -> ’a

Exception for retrieving the nth item when n is larger than the list size, probably redundant.

val inside complex :

(Pcfg.bucketed key, int * float) Hashtbl.t ->

< has rule : Item.cat * Point.dcfgrhs -> bool;

prob by rule : Item.cat * Point.dcfgrhs -> float; .. > ->

’a -> (Item.item, Train.parsorted drule) Hashtbl.t -> unit

Main algorithm that calcuates inside probability for all categories of a pcfg. Computes
buckets in topological order, and iterates through each bucket n times. N ¿ 40 is generally
sufficient for values to converge. Lack of underflow and some testing suggest that iteration
values much greater than 40 do not pose an accuracy problem.

val renorm init :

(Item.item, Pcfg.renorm cfgrule) Hashtbl.t ->

(Pcfg.bucketed key, ’a * float) Hashtbl.t ->

< has rule : Item.cat * Point.dcfgrhs -> bool;

prob by rule : Item.cat * Point.dcfgrhs -> float; .. > ->

(Item.item, Train.parsorted drule) Hashtbl.t -> unit

val inside renorm :

< has rule : Item.cat * Point.dcfgrhs -> bool;

41

prob by rule : Item.cat * Point.dcfgrhs -> float; .. > ->

(Dcfggraph.D.vertex * Point.point) list ->

(Dcfggraph.D.vertex, Pcfg.renorm cfgrule) Hashtbl.t option *

(Pcfg.bucketed key, int * float) Hashtbl.t option

Find the renormalized, situated probability of a rule by::

r′(A− > B) = r(A− > B) ∗ β B/β Ar′(A− > BC) = r(A− > BC) ∗ β B ∗ β C/β A (17)

where β(A) indicates the supremum of the inside probability.

4.3.4 Module Test

Handles initalizing and renormalizing pcfg values across the testbank. Calculates certain values
required for entropy computation, such as vech and the fertility matrix. Also handles the creation
of prefix automata from strings we wish to parse.

exception UnsampledRule

Exception for when rule to calculate with was unseen at training time.

val init priors : Pcfg.t bank -> (Item.cat, Pcfg.pcfgrule) Hashtbl.t -> unit

Initialize the weighted intersection with values form training time. The unsampled rule case
shouldnt happen unless something is wrong–because test dodesn’t parse zero prob items.

val renorm : (’a, Pcfg.renorm cfgrule) Hashtbl.t -> unit

Higher order function which parametrizes the renormalization of pcfg, so that testing can be
agnostic to renormalization. Renormalizes either naviely or according to inside probability.

val inside renorm init :

Pcfg.t bank ->

< has rule : Item.cat * Point.dcfgrhs -> bool;

prob by rule : Item.cat * Point.dcfgrhs -> float; .. > ->

unit

Initialize the values that inside.ml depends on.

val keylist of pcfg : (’a, ’b) Hashtbl.t -> ’a list

Obtain nonterminal indiced for various things in test.ml, probably redunandant.

val lg : float -> float

Binary logarithm function which treats the lg of 0 as 0.

val retrieve bucket probs :

(’a, Pcfg.renorm cfgrule) Hashtbl.t -> ’a list -> (’a, float list) Hashtbl.t

val entropy of bucket : float list -> float

Compute the one step entropy for a non-terminal for use in ~H.

42

val hvector pcfg init : Pcfg.t bank -> unit

Computes the one step entropy for each non-terminal for use in ~H.

val expect : ’a -> Item.item -> (’a, Pcfg.renorm cfgrule) Hashtbl.t -> float

Compute the fertility matrix for the pcfg.

val testbank init :

Pcfg.t bank ->

< pcfg : (Item.cat, Pcfg.pcfgrule) Hashtbl.t option; .. > -> unit

Across the test corpus, calculate all the things needed for entropy computation, according to
naive renormalization.

val inside testbank init :

Pcfg.t bank ->

< has rule : Item.cat * Point.dcfgrhs -> bool;

pcfg : (Item.cat, Pcfg.pcfgrule) Hashtbl.t option;

prob by rule : Item.cat * Point.dcfgrhs -> float; .. > ->

unit

Across the test corpus, calculate all the things needed for entropy computation, according to
inside renormalization.

val automatize : bool -> string list -> string list

If autbool, then construct automata for all possible prefixes of a sentence. Intelligently
handle any stars in the input. Enforces a policy of parsing, in order, Kleene star (the
unconditioned grammar), each prefix of the sentence including the prefix spanning the
sentence, and then the sentence as a sentence. The just Kleene-star portion could be turned
off when entropy of the unconditioned grammar would be hard to compute where the
conditioned grammar might be easy, and we don’t care about the information value of the
first word.

val parse testbank :

(’a -> string -> Point.forest -> ’b -> (’c, ’d) Hashtbl.t -> ’e -> ’f) ->

’a ->

’g ->

’b ->

’h ->

(< pcfg : ’e; .. > as ’i) ->

(Pcfg.t bank -> ’i -> ’j) ->

string -> bool -> string -> ((string * Item.item) * Pcfg.t bank) list

Higher order function which takes in several other higher order functions, including the
renormalization function, either testbank init or inside testbank init, the desired output
functions, etc...and coordinates test time computation of values to hand off to entropy.ml.

val range : int -> int -> int list

A Range operator which could go in utilities, and is probably redundant.

43

val parse testbank kilbury :

(’a ->

string ->

’b ->

’c ->

(’d, ’e) Hashtbl.t ->

’f ->

< pointers : (Item.item, Point.point) Hashtbl.t;

sitgram : Item.item -> Point.sitcfg; .. >) ->

’a ->

’b ->

’c ->

’g ->

(< pcfg : ’f; .. > as ’h) ->

(Pcfg.t bank -> ’h -> unit) ->

string -> ’i -> string -> ((string * Item.item) * Pcfg.t bank) list

Experimental incremental parsing on testbanks, doesn’t work yet.

4.3.5 Module Entropy

Compute all the entropies.

exception NoOption

val optget : ’a option -> ’a

Unboxing option types for entropy purposes, probably redundant.

exception UnequalLengths of (int * int)

Exception is which is thrown when matrix and h-vector have different lengths (are
differently indexed by unique sets of nonterminals).

4.3.5.1 Stolcke matrix cut trick

val zap : ’a array -> int -> ’a array

Delete the nth row in the array.

val zap col : ’a array array -> int -> ’a array array

Delete the nth column in the matrix.

val ins : ’a array -> int -> ’a -> ’a array

Insert a row of all zeros into the nth position in the array.

val ins col : ’a array array -> int -> ’a -> ’a array array

Insert a column of all zeros into the nth position in the matrix.

val reduce : ’a array * float array array -> ’a array * float array array

44

For any n, if both row n and column are all 0.0, eliminate row and column n and return
them after inversion. Stolcke tells us this should work.

val blowup :

’a array * float array array -> ’a array -> ’a array * float array array

For any reduced invert matrix, put back in all the rows and columns of all zero that we took
out of the preinverted matrix. Stolcke tells us that this should work.

exception NonSquare of string

Exception which is thrown when matrix is non-square.

exception ZeroDeterminant

Exception which is thrown when determinant of the matrix is equal to zero, aka the matrix
is noninvertible.

exception EmptyMatrix

Exception which is thrown when matrix is entropy (probably because a parse was fail and
not identified as such). It usually raises when something wrong happened at training.
Before including this, parser would return a strange fragmentation error, which is supposed
to be impossible for OCaML, according to Jon Harrop. Turns out it is, it was gsl (which is
written in C) getting an empty matrix to invert.

exception TrainingSpectralRadius of string

Exception which is thrown when spectral radius of the matrix is greater than or equal to
1.0. This is bad, but should never happen when we traing the grammar from Treebank,
according to Chi. It could potentially happen from arbitrary PCFG. It means that the set
of sentences has probability greater than 1.0, ergo we fail to define a probabilistic language.

exception SpectralRadius of float

Exception which is thrown when spectral radius of the matrix is greater than or equal to
1.0. This is bad, but shouldn’t happen so long as our intersection grammar is consistent,
which is suggested by Nederhof and Satta. Our intersection grammar should be consistent
when both our training grammar is consistent and our automaton is consistent. It could
potentially happen from arbitrary PCFG. It means that the set of sentences has probability
greater than 1.0, ergo we fail to define a probabilistic language.

val eigenlist : Gsl matrix.matrix -> float list

Give me the eigenvalues of the matrix. Used for the spectral radius check, potentially very
interesting for other things.

val eigencheck : float -> bool

val infnorm : float array array -> float

The infinity norm on matrices. Used to determine a condition number on matrice formed
from inf

normM ∗ inf
normMˆ− 1.

val cond number : float array array -> float array array -> float

45

Condition number of the matrix times the input error equals total error of the inverted
matrix. The condition number tells us how ’lossy’ matrix inversion is. Condition numbers
range from 1 to infinity.

val entropy of matrix :

’a array * float array array ->

(’a, float) Hashtbl.t -> (’a, float) Hashtbl.t

Compute the entropy of a fertility matrix by calculating (I −A)−1~h. We can be
polymorphic, and pass in either original or renormalized matrices/hvectors. Original values
are read off of a record, renormalized values off of the matrix-particular record entry.

exception Catlength of int

val entropy of testbank :

string ->

string ->

bool ->

bool ->

(Pcfg.t bank -> Train.treebank -> ’a) ->

(’b ->

string ->

Point.forest ->

’c -> (’d, ’e) Hashtbl.t -> (Item.cat, Pcfg.pcfgrule) Hashtbl.t option -> ’f) ->

’b ->

Point.forest ->

’c ->

’g ->

(Train.treebank -> ((string * Item.item) * Pcfg.t bank) list -> string -> ’h) ->

string -> ((string * Item.item) * Pcfg.t bank) list

Compute entropies for the entire testbank.

val entropy of testbank kilbury :

string ->

string ->

bool ->

’a ->

(Pcfg.t bank -> Train.treebank -> unit) ->

(’b ->

string ->

(< pointers : (Item.item, Point.point) Hashtbl.t; .. > as ’c) ->

’d -> (’e, ’f) Hashtbl.t -> ’g option -> ’h) ->

(’b ->

string ->

’c ->

’d ->

(’i, ’j) Hashtbl.t ->

46

(Item.cat, Pcfg.pcfgrule) Hashtbl.t option ->

< pointers : (Item.item, Point.point) Hashtbl.t;

sitgram : Item.item -> Point.sitcfg; .. >) ->

’b ->

’c ->

’d ->

’k ->

(Train.treebank -> ((string * Item.item) * Pcfg.t bank) list -> string -> ’l) ->

string -> ((string * Item.item) * Pcfg.t bank) list

Experimental kilbury mode doesnt work yet.

4.4 Printing and Output

4.4.1 Module Decompile

Given an mcfg tree labeled with points and a dictionary file from the Guillaumin [2004] compiler,
decompiles into an mg tree labeled with a (string,category) tuple. This can then be passed into a
print function.

val label of tree : ’a Utilities.stufftree -> ’a

Extract a given category label from the tree.

val rewr of tree :

Item.item Utilities.stufftree ->

(Item.item list, Grammar.componentSpec list list) Hashtbl.t ->

Grammar.componentSpec list list

Extract a given pointer from the tree.

val mcfg to mcfg :

string ->

’a ->

’b -> Item.item Utilities.stufftree -> (string * Item.cat) Utilities.disptree

Provide an mcfg disptree for a given mcfg stufftree.

val mcfg to mg ation :

string ->

(Item.cat, string) Hashtbl.t ->

’a -> Item.item Utilities.stufftree -> (string * string) Utilities.disptree

Provide an MG derivation tree for a given mcfg tree.

val mcfg to mg ived :

string ->

(Item.cat, string) Hashtbl.t ->

(Item.item, Point.point) Hashtbl.t ->

Item.item Utilities.stufftree -> (string * string) Utilities.disptree

Attempt to provide an MG derived tree for a given mcfg tree. Not implemented.

47

val successes : Item.item list -> string -> Item.cat list -> Item.item list

Return a list of successful start items spanning the string. Probably should go in point.ml if
possible.

val check mcfg :

< get chart : Item.item list; pointers : (Item.item, Point.point) Hashtbl.t;

.. > ->

string -> ’a -> Item.cat list -> (string * Item.cat) Utilities.disptree list

Higher order checking function for mcfg to pass into mcfgcky.ml and other modules
requiring MCFG derivation tree output.

val check mg :

< get chart : Item.item list; pointers : (Item.item, Point.point) Hashtbl.t;

.. > ->

string ->

(Item.cat, string) Hashtbl.t ->

Item.cat list -> (string * string) Utilities.disptree list

Higher order checking function for mcfg to pass into mcfgcky.ml and other modules
requiring MG derivation tree output.

val check mg ived :

< get chart : Item.item list; pointers : (Item.item, Point.point) Hashtbl.t;

.. > ->

string ->

(Item.cat, string) Hashtbl.t ->

Item.cat list -> (string * string) Utilities.disptree list

Higher order checking function for mcfg to pass into mcfgcky.ml and other modules
requiring MG derived tree output. Not implemented.

val check null : ’a -> ’b -> ’c -> ’d -> ’e list

Vacuous higher order checking function for mcfg to pass into Mcfgcky.parse gen where it is
used for statistical parsing modules which do not require explicit discrete derivation or
derived trees.

4.4.2 Module Output

Various output functions that we need. Coordinates output in a quiet and a verbose mode. Could
probably stuff some verbose mode functionality into a separate debugging mode. Alternatively,
could just have the command line option spit out what you need (include a seperate option for the
fertility matrix, for example).

val round : float -> float

Round a floating point number intelligently to 3 places after the decimal. Used sparingly.

val rounded_string : float -> string

48

Provide a rounded string representation of the floating point number.

val pp_H_hash : Pcfg.t_bank -> Pervasives.out_channel -> unit

Output entropy values from the hash table for verbose output. Could in most cases be shut off.

val string_of_fmatrix :

(Item.item array * float array array) option -> string

val pp_fmatrices : Pcfg.t_bank -> Pervasives.out_channel -> unit

Output the fertility matrix for verbose output. Could definitely be suppressed, but should be
kept around for debugging purposes.

val string_of_trainrhs : Point.dcfgrhs -> Item.cat

val pp_trainpcfg :

< pcfg : (string, Pcfg.pcfgrule) Hashtbl.t option; .. > ->

Pervasives.out_channel -> unit

Output the treebank grammar in verbose mode. Very useful to have around.

val pp_testcfg : Pcfg.t_bank -> Pervasives.out_channel -> unit

Output the weighted intersection grammar in verbose mode. Very useful to have around.

val pp_renormedhvect : Pcfg.t_bank -> Pervasives.out_channel -> unit

Output the values of ~h. Could be suppresed but useful for debugging.

val pp_inside : Pcfg.t_bank -> Pervasives.out_channel -> unit

Output the inside probabilities of different values in verbose mode. Mostly useful to have
around.

val pp_testbank_report :

((string * ’a) * Pcfg.t_bank) list -> Pervasives.out_channel -> unit

Output all the testtime-pretinent values provided by the above functions in a report in verbose
mode.

val pp_ent_report :

< pcfg : (string, Pcfg.pcfgrule) Hashtbl.t option; .. > ->

((string * ’a) * Pcfg.t_bank) list -> string -> unit

Total output for verbose mode.

val pp_ent_sum : ’a -> ((string * ’b) * Pcfg.t_bank) list -> string -> unit

Summary of entropy values for quiet mode.

val pp_surp_sum :

’a -> ((string * Item.item) * Pcfg.t_bank) list -> string -> unit

Summary of surprisal values for quiet mode.

val pp_surp_sum_kilbury :

’a -> ((string * Item.item) * Pcfg.t_bank) list -> string -> unit

Summary of surprisal values for experimental kilbury parsing in quiet mode.

val pp_short_sum :

’a -> ((string * Item.item) * Pcfg.t_bank) list -> string -> unit

Total output for quiet mode.

val pp_short_sum_kilbury :

’a -> ((string * Item.item) * Pcfg.t_bank) list -> string -> unit

Total output for quiet mode in experimental kilbury parsing.

49

4.4.3 Module Print

Low-level printing capabilities for standard out and file output.

val string of span : Item.span -> string

Return a string of a given span.

val string of spanlist : Item.span list -> string

Return a string of a given span list.

val string of anonitem : Item.span list list -> string

Return a string of a given span list list. Not used.

val string of item : Item.item -> string

Return a string of a given item.

val string of point : Point.point -> string

Return a string of a given pointer.

val print item : (Item.item, Point.point) Hashtbl.t -> Item.item -> unit

Print a given item to standard out.

val string label : string -> Item.span list -> string

val cat label : ’a -> (’a, string) Hashtbl.t -> string

val full label :

string -> Item.span list -> ’a -> (’a, string) Hashtbl.t -> string

val qtree of tree : (string * string) Utilities.disptree -> string

For a given derivation/derived tree return a qtree-format string for LaTeX.

val dot of tree : (string * string) Utilities.disptree -> string

For a given derivation/derived tree return a qtree-format string for DOT.

val pp of tree : (’a * string) Utilities.disptree -> string

For a given derivation/derived tree return a pretty-printed string.

val print trees :

(’a ->

string ->

’b ->

((< pointers : (’d, ’e) Hashtbl.t; .. > as ’c) ->

string -> ’f -> string list -> ’g list) ->

’f -> ’h option -> ’c) ->

’a ->

string ->

’b ->

(’c -> string -> ’f -> string list -> ’g list) ->

(’g -> string) -> ’f -> string -> unit

Given a checking function and a print function, return the appropriate display tree.

val print_trees_iter :

(’a ->

string ->

(< pointers : (’c, ’d) Hashtbl.t; .. > as ’b) ->

50

(’e -> string -> ’f -> string list -> ’g list) -> ’f -> ’h option -> ’e) ->

’a ->

string ->

’b ->

(’e -> string -> ’f -> string list -> ’g list) ->

(’g -> string) -> ’f -> string -> unit

Same as above, but iterates over a list of sentences passed in from a file

val print_debug : (’a -> ’b -> ’c -> ’d) -> ’a -> ’b -> ’c -> ’e -> ’d

Given a checking function and a print function, return debugging statements from the stack
during parsing.

References

Daniel M. Albro. An earley-style recognition algorithm for mcfgs.

K. Vijay-Shanker Avarind K. Joshi and David Weir. The convergence of mildly context-sensitive
grammars. In S. M. Shieber and T. Wasow, editors, The Processing of Natural Language Struc-
ture. MIT Press, 1992.

Sylvie Billot and Bernard Lang. The structure of shared forests in ambiguous parsing. In Proceed-
ings of the 27th annual meeting on Association for Computational Linguistics, pages 143–151.
Association for Computational Linguistics Morristown, NJ, USA, 1989.

Zhiyi Chi. Statistical properties of probabilistic context-free grammars. Computational Linguistics,
25(1):131–160, 1999.

Josh Goodman. Semiring parsing. Computational Linguistics, 25(4):573–605, 1999.

Ulf Grenander. Syntax-controlled Probabilities. Division of Applied Mathematics, Brown University,
1967.

Matthieu Guillaumin. Conversions between mildly context sensitive grammars. 2004.

M. Fujii H. Seki, T. Matsumura and T. Kasami. On multiple context-free grammars. Theoretical
Computer Science, 1991.

John T. Hale. A probabilistic Earley parser as a psycholinguistic model. In Proceedings of NAACL,
volume 2, pages 159–166, 2001.

John T. Hale. Uncertainity About The Rest of The Sentence. Cognitive Science, 2006.

Frederick Jelinek and John D. Lafferty. Computation of the probability of initial substring genera-
tion by stochastic context-free grammars. Computational Linguistics, 17(3):315–323, 1991. ISSN
0891-2017.

Avarind K. Joshi. Tree Adjoining Grammars: How Much Context-Sensitivity Is Required to Provide
Reasonable Structural Descriptions? Natural Language Parsing: Psychological, Computational
and Theoretical Perspectives, 1985.

51

Laura Kallmeyer. Parsing Beyond Context-Free Grammars. Not Avail, 2010. ISBN 364214845X.

Bernard Lang. Parsing incomplete sentences. In Proceedings of the 12th conference on Compu-
tational linguistics-Volume 1, pages 365–371. Association for Computational Linguistics Morris-
town, NJ, USA, 1988.

C.D. Manning, H. Schütze, and MIT Press. Foundations of statistical natural language processing.
MIT Press, 1999.

R. Nakanishi, K. Takada, and H. Seki. An efficient recognition algorithm for multiple context free
languages. Proceedings of the Fifth Meeting on Mathematics of Language, MOL5, 1997.

Mark-Jan Nederhof and Giorgio Satta. Estimation of consistent probabilistic context-free gram-
mars. In Proceedings of the main conference on Human Language Technology Conference of
the North American Chapter of the Association of Computational Linguistics, pages 343–350.
Association for Computational Linguistics Morristown, NJ, USA, 2006.

Mark-Jan Nederhof and Giorgio Satta. Computing partition functions of PCFGs. Research on
Language & Computation, 6(2):139–162, 2008. ISSN 1570-7075.

Timothy J. O’Donnell, Noah D. Goodman, and Josh B. Tenenbaum. Fragment Grammars: Ex-
ploring Computation and Reuse in Language. 2009.

Lawrence C. Paulson. ML for the Working Programmer. Cambridge Univ Pr, 1996. ISBN
052156543X.

Stuart M. Shieber, Yves Schabes, and Fernando C.N. Pereira. Principles and implementation of
deductive parsing. The Journal of Logic Programming, 24(1-2):3–36, 1995.

Edward P. Stabler. Derivational minimalism. In Logical Aspects of Computational Linguistics.,
pages 68–95. Springer, 1997.

Mark Steedman. The Syntatcic Process. MIT Press, 2000.

Andreas Stolcke. An efficient probabilistic context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2):165–201, 1995.

52

