Modeling switch reference in Koasati

Mary Moroney, Cornell University
mrm366@cornell.edu
July 13, 2016

1 Introduction

- Switch reference (SR), a morphological phenomenon found in several languages in the world, is traditionally characterized as a way of indicating whether the subjects of two conjoined clauses are the same or different (Jacobsen 1993).
- Examples of SR in Koasati, a Muskogean language spoken in Louisiana and Texas, can be seen in (1).

(1)

a. Edkã hihcok kokko:lit
 ‘saw Ed, and sat down.’ (Rising 1992: 4)

b. Edkã hi:ca-k kokko:lit
 ‘saw Ed, and he [Ed] sat down.’

- In (1a), the morpheme -k (SS) on the second verb hihcok (‘see’) indicates that its subject, Joe, is the same as the subject of the final verb kokko:lit (‘sat down’).
- In (1b), the -n (DS) on the second verb hihcan (‘see’) indicates that its subject, Joe, is not the subject of the final verb kokko:lit (‘sat down’), but instead the object of hihcan, Ed, is.
- Consider the English equivalent of (1) in (2).

(2)

He in the third sentence could refer to either Joe or Ed.

1 All data examples are copied unchanged from their sources except in the nasalization marker in examples from Kimball, which I changed from \(V \) to \(\acute{V} \) and in the third line of the gloss. The third line of the gloss has been changed to better fit the Leipzig glossing conventions.

Gloss abbreviations: SS = SAME SUBJECT; DS = DIFFERENT SUBJECT; SBJ = SUBJECT; OBJ = OBJECT

- The English is ambiguous where the Koasati is not.
- They analyze SR as tracking events or situations, but I pursue a reference tracking analysis for Koasati SR.
- I model this data on switch reference using Predicate Logic with Anaphora (PLA; Dekker 1994), a system that maintains an ordered list of individuals in a discourse.

Roadmap

§2 Koasati switch reference
§3 Introduction to PLA
§4 Initial PLA analysis: one-list system
§5 A problem & the two-list system
§6 Conclusion
§A Two list fragment

2 Koasati switch reference

- Koasati word order is typically SOV.
- SR marking appears on the verb at the end of the clause.
- The verbal SS and DS morphemes are homophonous with the nominal SBJ and OBJ markings.

<table>
<thead>
<tr>
<th>Morpheme</th>
<th>Attached to Noun</th>
<th>Attached to Verb</th>
</tr>
</thead>
<tbody>
<tr>
<td>-k</td>
<td>subject (SBJ)</td>
<td>same subject (SS)</td>
</tr>
<tr>
<td>-n</td>
<td>object (OBJ)</td>
<td>different subject (DS)</td>
</tr>
</tbody>
</table>

Table 1: Subject, object, and switch reference morphemes

- The overlap in the form of the nominal subject and object marker with the SR markers suggests that there is an important connection between reference and SR.

Notation for tables:

- Bold items in the table indicate overt arguments.

(1a) Joekak roomkã itcokhalihkok Edkã hihcok kokko:lit
 ‘Joe came into the room, saw Ed, and sat down.’ (Rising 1992: 4)
Further, this pattern can be manipulated by the switch reference markers.

- The SS marker makes the subject and object of the SS marked clause the available subject and object, respectively, for the next clause.
- The DS marker makes the subject and object of the DS marked clause the available object and subject, respectively, for the next clause.

A system like PLA that can order individuals can be used to model this data.

3 Background on PLA

- Predicate Logic with Anaphora (PLA; Dekker 1994) extends standard Predicate Logic in order to keep track of individuals in a discourse.
- Has regular truth conditions, but a formula is interpreted as an update of an information state.

(3) A sample PLA information state

\[
s = \{\langle a, b, c \rangle \}
\]

- \(p_i \): index the position of the pronoun
- \(\Xi \): introduces individuals to information state

(2) Joe\(_j\) came into the room. He\(_j\) saw Ed\(_k\). He\(_j/k\) sat down.

4 One list analysis

- In English the ambiguity of *he* is represented in PLA by different pronoun terms: \(p_0 \) and \(p_1 \).
- The lack of ambiguity in the Koasati data can be captured by translating the subject agreement marker as \(p_0 \) and object agreement marker as \(p_1 \).
- Further, the switch reference markers can be translated so that the DS marker swaps the order of the individuals in the \(p_0 \) and \(p_1 \) positions and the SS marker maintains the order.

(4) SS Marker

\[
s_0 = \{a, b, c\} \quad SS \quad s_{n+1} = \{\langle a, b, c, b, c \rangle\}
\]

(5) DS Marker

\[
s_0 = \{a, b, c\} \quad DS \quad s_{n+1} = \{\langle a, b, c, c, b \rangle\}
\]

5 Table 5: Analysis of other translation of (2)

<table>
<thead>
<tr>
<th>English</th>
<th>PLA</th>
<th>Pro. Interpr.</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Joe(_j) came into the room.</td>
<td>(\exists x (x = j \land \exists y (y = r \land boy)))</td>
<td>(s_0 = {})</td>
<td>(s_1 = {(r, j)})</td>
</tr>
<tr>
<td>b. Joe(_j) came into the room.</td>
<td>(\exists x (x = p_0 \land \exists z (z = b)))</td>
<td>(p_0 \rangle s_1 = j)</td>
<td>(s_2 = {(r, j, e)})</td>
</tr>
<tr>
<td>c. He(_j) saw Ed(_k).</td>
<td>(\exists y (y = e \land boy))</td>
<td>(p_0 \rangle s_1 = j)</td>
<td>(s_2 = {(r, j, e)})</td>
</tr>
<tr>
<td>d. He(_j) sat down.</td>
<td>(C_p)</td>
<td>(p_1 \rangle s_2 = c)</td>
<td>(s_3 = {(r, j, e)})</td>
</tr>
</tbody>
</table>

6 Table 6: Analysis of (1)

<table>
<thead>
<tr>
<th>English</th>
<th>Gloss</th>
<th>PLA</th>
<th>Pronoun Interp.</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Joe-SBJ</td>
<td>(\exists z (z = j))</td>
<td></td>
<td>(s_1 = {(j)})</td>
<td></td>
</tr>
<tr>
<td>b. room-OBJ</td>
<td></td>
<td>(\exists x (x = p_0 \land \exists z (z = r)))</td>
<td></td>
<td>(s_2 = {(j, r, j)})</td>
</tr>
<tr>
<td>c. enter</td>
<td>(l p_0 p_1)</td>
<td></td>
<td>(p_1 \rangle s_2 = r, [p_0]_s_1 = j)</td>
<td>(s_3 = {(j, r, j)})</td>
</tr>
<tr>
<td>d. (-SS)</td>
<td>(\exists x (x = p_0 \land \exists y (y = p_1)))</td>
<td></td>
<td>(p_1 \rangle s_3 = r, [p_0]_s_1 = j)</td>
<td>(s_4 = {(j, r, j, r)})</td>
</tr>
</tbody>
</table>

7 Table 3: Breakdown of (1b)

<table>
<thead>
<tr>
<th>Clause</th>
<th>Verb Gloss</th>
<th>Subject</th>
<th>Object</th>
<th>SS Marker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>enter</td>
<td>Joe</td>
<td>room</td>
<td>SS</td>
</tr>
<tr>
<td>2.</td>
<td>see</td>
<td>Joe</td>
<td>Ed</td>
<td>DS</td>
</tr>
<tr>
<td>3.</td>
<td>sat_down</td>
<td>Ed</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

8 Table 4: Analysis of one translation of (2)

<table>
<thead>
<tr>
<th>English</th>
<th>PLA</th>
<th>Pro. Interpr.</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Joe(_j) came into the room.</td>
<td>(\exists x (x = j \land \exists y (y = r \land boy)))</td>
<td></td>
<td>(s_0 = {})</td>
</tr>
<tr>
<td>b. Joe(_j) came into the room.</td>
<td>(\exists x (x = p_0 \land \exists z (z = b)))</td>
<td></td>
<td>(s_1 = {(r, j)})</td>
</tr>
<tr>
<td>c. He(_j) saw Ed(_k).</td>
<td>(\exists y (y = e \land boy))</td>
<td>([p_0]_s_1 = j)</td>
<td>(s_2 = {(r, j, e)})</td>
</tr>
<tr>
<td>d. He(_j) sat down.</td>
<td>(C_p)</td>
<td>([p_1]_s_2 = c)</td>
<td>(s_3 = {(r, j, e)})</td>
</tr>
</tbody>
</table>

- In (b), the narrow scope quantifier adds \(r \) to the information state first.
- Then the broad scope quantifier adds \(j \) to the information state.
5 A problem

The different SR morpheme translations in (g) for Tables 7-8 generate distinct unambiguous interpretations.

5.1 Two list analysis

- I adapt PLA to be a two list system
- Bittner (2001) uses a two list system for anaphora and also applies it in an analysis of the obviative system in Kalallit (West Greenlandic) (Bittner 2011)
- Little and Moroney (2016) use a two list system related to the one presented here in an analysis of obviatiion in Mi'gmaq

(7) A sample two list information state

\[
\begin{align*}
\{(a, b), (c, d)\} \\
\end{align*}
\]

- a-SBJ: \(\exists z (z = a)\)
- b-OBJ: \(\exists z (z = b)\)
- trans. verb: \(V_{p_0} \top\)
- intrans. verb: \(V_{p_0} \top\)
- SS: \(\exists y (y = p_0)\)
- DS: \(\exists y (y = p_0)\)

(8) SS marker

\[
\begin{align*}
\{(a, b), (c, d)\} & \xrightarrow{SS} s_{n+1} = \{(a, b), (c, d, b, d)\} \\
\end{align*}
\]

(9) DS marker

\[
\begin{align*}
\{(a, b), (c, d)\} & \xrightarrow{DS} s_{n+1} = \{(a, b, d), (c, d, b)\} \\
\end{align*}
\]
5.2 Accounting for data

- The two list system can still account for the initial data:

Table 12: Analysis of (1)

<table>
<thead>
<tr>
<th>Gloss</th>
<th>PLA</th>
<th>Pronoun Interp.</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Joe-SBJ</td>
<td>$\exists z (z = j)$</td>
<td></td>
<td>$s_1 = {(j, j)}$</td>
</tr>
<tr>
<td>b. room-OBJ</td>
<td>$\exists z (z = r)$</td>
<td></td>
<td>$s_2 = {(j, r)}$</td>
</tr>
<tr>
<td>c. enter</td>
<td>$l_p^0 p_0^+$</td>
<td></td>
<td>$s_3 = {(j, r)}$</td>
</tr>
<tr>
<td>d. -SS</td>
<td>$\exists x (x = p_0^+ \land \exists y (y = p_0^-))$</td>
<td>$[p_0^+]{j_5} = j, [p_0^-]{j_5} = r$</td>
<td>$s_4 = {(j, r, j, r)}$</td>
</tr>
</tbody>
</table>

Table 13: Analysis of (1a)

<table>
<thead>
<tr>
<th>Gloss</th>
<th>PLA</th>
<th>Pronoun Interp.</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. Ed-OBJ</td>
<td>$\exists z (z = e)$</td>
<td></td>
<td>$s_5 = {(j, r, j, e)}$</td>
</tr>
<tr>
<td>f. see</td>
<td>$H_p^0 p_0$</td>
<td></td>
<td>$s_6 = {(j, r, j, e)}$</td>
</tr>
<tr>
<td>g. -SS</td>
<td>$\exists y (y = p_0^+) \land \exists x (x = p_0^-)$</td>
<td>$[p_0^+]{j_6} = j, [p_0^-]{j_6} = e$</td>
<td>$s_7 = {(j, r, j, e, j)}$</td>
</tr>
<tr>
<td>h. sat_down</td>
<td>C_0^p</td>
<td></td>
<td>$s_8 = {(j, r, j, e, j)}$</td>
</tr>
</tbody>
</table>

Table 14: Analysis of (1b)

<table>
<thead>
<tr>
<th>Gloss</th>
<th>PLA</th>
<th>Pronoun Interp.</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. Ed-OBJ</td>
<td>$\exists z (z = e)$</td>
<td></td>
<td>$s_5 = {(j, r, j, e)}$</td>
</tr>
<tr>
<td>f. see</td>
<td>$H_p^0 p_0$</td>
<td></td>
<td>$s_6 = {(j, r, j, e)}$</td>
</tr>
<tr>
<td>g. -DS</td>
<td>$\exists y (y = p_0^+) \land \exists x (x = p_0^-)$</td>
<td>$[p_0^+]{j_6} = j, [p_0^-]{j_6} = e$</td>
<td>$s_7 = {(j, r, j, e, j)}$</td>
</tr>
<tr>
<td>h. sat_down</td>
<td>C_0^p</td>
<td></td>
<td>$s_8 = {(j, r, j, e, j)}$</td>
</tr>
</tbody>
</table>

- It can account for the problematic data by keeping the available subject and object individuals separate:

Table 15: Analysis of (6)

<table>
<thead>
<tr>
<th>Gloss</th>
<th>PLA</th>
<th>Pronoun Interp.</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Joe-SBJ</td>
<td>$\exists z (z = j)$</td>
<td></td>
<td>$s_1 = {(j, j)}$</td>
</tr>
<tr>
<td>b. room-OBJ</td>
<td>$\exists z (z = r)$</td>
<td></td>
<td>$s_2 = {(j, r)}$</td>
</tr>
<tr>
<td>c. enter</td>
<td>$l_p^0 p_0^+$</td>
<td></td>
<td>$s_3 = {(j, r)}$</td>
</tr>
<tr>
<td>d. -DS</td>
<td>$\exists y (y = p_0^+) \land \exists x (x = p_0^-)$</td>
<td>$[p_0^+]{j_5} = j, [p_0^-]{j_5} = j$</td>
<td>$s_4 = {(j, r, j, j)}$</td>
</tr>
</tbody>
</table>

Table 16: Analysis of (6a)

<table>
<thead>
<tr>
<th>Gloss</th>
<th>PLA</th>
<th>Pronoun Interp.</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>e. Ed-SBJ</td>
<td>$\exists z (z = e)$</td>
<td></td>
<td>$s_5 = {(j, r, e, j)}$</td>
</tr>
<tr>
<td>f. see</td>
<td>$H_p^0 p_0$</td>
<td></td>
<td>$s_6 = {(j, r, e, j)}$</td>
</tr>
<tr>
<td>g. -DS</td>
<td>$\exists y (y = p_0^+) \land \exists x (x = p_0^-)$</td>
<td>$[p_0^+]{j_6} = j, [p_0^-]{j_6} = j$</td>
<td>$s_7 = {(j, r, e, j, j)}$</td>
</tr>
<tr>
<td>h. sat_down</td>
<td>C_0^p</td>
<td></td>
<td>$s_8 = {(j, r, e, j, j, e)}$</td>
</tr>
</tbody>
</table>

6 Conclusion

- I have presented basic data of switch reference in Koasati
- I have discussed two PLA analyses for how to account for this data
 - One account uses Dekker’s (1994) one-list system
 - The other account modifies his system to two lists to separate subjects and objects
- The two list analysis is better equipped to capture the data
- There is more work to be done to capture more complex data (plural, indexicals, ditransitives)

References

A Two list fragment

- Additions to PLA are indicated with a *

DEFINITION 1.1 (Basic Expressions of PLA)

1. \[C = \{a,b,\ldots,n\} \] (entity) constants
2. \[V = \{x,y,z,x',y',z',\ldots\} \] (entity) variables
3. \[A = \{p_i^T \mid i \in \mathcal{N}\} \] (entity) pronouns of list \(T \)
4. \[B = \{p_i^\perp \mid i \in \mathcal{N}\} \] (entity) pronouns of list \(\perp \)
5. \[T = C \cup V \cup A \cup B \] (entity) terms
6. \[R^n = \{A^1,\ldots,A^n,B^1,\ldots,Z^n\} \] n-ary predicates

DEFINITION 1.2 (Syntax of PLA) The set \(L \) of PLA formulas is the smallest set such that:

1. If \(t_1,\ldots,t_n \in T \) and \(R \in R^n \), then \(Rt_1\ldots t_n \in L \)
2. If \(t_1,t_2 \in T \), then \(t_1 = t_2 \in L \)
3. If \(\phi \in L \), then \(\neg \phi \in L \)
4. If \(\phi \in L \) and \(x \in V \), then \(\exists^T x \phi \in L \)
5. If \(\phi \in L \) and \(x \in V \), then \(\exists^\perp x \phi \in L \)
6. If \(\phi, \psi \in L \), then \((\phi \land \psi) \in L \)

DEFINITION 2.1 (Information States)

1. \[S^n = \mathcal{P}(D^a \times D^b) \] the set of information states about \(n \) subjects, where \(a \) is the number of subject in the \(T \) list and \(b \) is the number of subjects in the \(\perp \) list and \(a + b = n \)
2. \[S = \bigcup_{n \in \mathbb{N}} S^n \] the set of information states
3. For a state \(s \in S^n \), where \(a + b = n \) and \(0 < j \leq a \), and for any case \(e = (d_1^j,\ldots,d_n^j) \in s, d_j^j \) is a possible value for the \(j \)-th subject of \(s \), also indicated as \(e_j^j \).
4. For a state \(s \in S^n \), where \(a + b = n \) and \(0 < k \leq b \), and for any case \(e = (d_1^k,\ldots,d_n^k) \in s, d_k^j \) is a possible value for the \(k \)-th subject of \(s \), also indicated as \(e_k^j \).
5. \(s_0 = \{\langle \langle \rangle,\langle \rangle\rangle\} \) (the initial state of information: \(D^a \times D^b \))
6. \(\top^n = D^a \times D^b \) (the maximal state of information about \(n \) subjects, where \(a + b = n \))
7. \(\{e\} \) for any \(e = (d_1^1,\ldots,d_n^1) \in D^a \times D^b \) (the maximal state of information, where \(a + b = n \))
8. \(\perp^n = \{\} \) (the absurd information state about \(n \) subjects, where \(n > 0 \))

DEFINITION 2.2 (Notational Convention)

1. If \(e \in D^a \) and \(e' \in D^b \), then \(e \cdot e' = (e_1,\ldots,e_n,e'_1,\ldots,e'_m) \in D^{a+m} \)
2. \(e' \) is an extension of \(e \), \(e \leq e' \), if \(\exists e'' : e' = e \cdot e'' \)
3. \(e' \) is an extension of \(e \), \(e \leq e' \), if \(\forall e^+ \in e' \exists e'' : e'' \leq e \perp \perp e'' \)
4. For \(s \in S^n (i \in D^a) \), \(N_i = n(=a+b) \), \(N_a = a, N_b = b \), the number of subjects of \(s(i) \)

DEFINITION 2.3 (Information Update)

1. State \(s' \) is an update of state \(s, s \leq s', \text{iff} N_i \leq N_{i'} \), and \(\forall e' \in s' \exists e \in s : e \leq e' \)

DEFINITION 3.1 (Interpretation of Terms)

1. \([c]_{\mathfrak{A},s,e,g} = F(c) \) for all constants \(c \)
2. \([x]_{\mathfrak{A},s,e,g} = g(x) \) for all variables \(x \)
3. \([p_i^T]_{\mathfrak{A},s,e,g} = e_{N_i-1} \) for all pronouns \(p_i^T \) and \(e \) and \(e^+ \) and \(s \) such that \(e^+ \in e \) and \(e \in s \) and \(N_i > i \)
4. \([p_i^\perp]_{\mathfrak{A},s,e,g} = e_{N_i-1} \) for all pronouns \(p_i^\perp \) and \(e \) and \(e^+ \) and \(s \) such that \(e^+ \in e \) and \(e \in s \) and \(N_i > i \)

DEFINITION 3.2 (Semantics of PLA)

1. \(s[R_{t_1\ldots t_n}]_{\mathfrak{A},s,e,g} = \{e \mid (t_1]_{\mathfrak{A},s,e,g},\ldots;[n]_{\mathfrak{A},s,e,g}) \in F(R) \} \) (if \(N_i > h_1,\ldots,h_n \))
2. \(s[t_1 = t_2]_{\mathfrak{A},s,e,g} = \{e \mid [t_1]_{\mathfrak{A},s,e,g} = [t_2]_{\mathfrak{A},s,e,g} \}
3. \(s[\neg \phi]_{\mathfrak{A},s,e,g} = \{e \mid \neg \exists e' : e \leq e' \perp e \in s[\phi]_{\mathfrak{A},s,e,g} \}
4. \(s[\exists^T x \phi]_{\mathfrak{A},s,e,g} = \{e \mid [e^+ \cdot d, e^+] \in s[\phi]_{\mathfrak{A},s,e,g}(x/d) \}
5. \(s[\exists^\perp x \phi]_{\mathfrak{A},s,e,g} = \{e \mid [e^+, e^+ \cdot d] \in s[\phi]_{\mathfrak{A},s,e,g}(x/d) \}
6. \(s[\phi \land \psi]_{\mathfrak{A},s,e,g} = s[\phi]_{\mathfrak{A},s,e,g}[\psi]_{\mathfrak{A},s,e,g} \)

DEFINITION 4.1 (Support and Entailment)

1. \(\phi \) \emph{supports} \(\phi \) \emph{wrt} \(\mathfrak{A} \) and \(s \), \(s \vdash_{\mathfrak{A},s,e,g} \phi \) if \(\forall e \in s : \exists e' : e \leq e' \perp e \in s[\phi]_{\mathfrak{A},s,e,g} \)
2. \(\phi_1,\ldots,\phi_n \) \emph{entail} \(\psi \) \emph{wrt} \(\mathfrak{A},g \) \emph{wrt} \(v \in S : s[\phi_1]_{\mathfrak{A},s,e,g} \cdots [\phi_n]_{\mathfrak{A},s,e,g} \vdash_{\mathfrak{A},g} \psi \) (if defined)