Transitivity and Event Type: Affectedness as Causative Licensor

Acktionsart-based approaches to licensing causatives are promising for handling such data as in (1), because these approaches avoid appeal to a syntax/lexicon divide. Such approaches naturally explain the PP-requirement asymmetry in (1), appealing to the generally telic nature of unaccusatives and the generally atelic nature of unergatives.

Recently, though, telicity-based approaches to causative licensing have been under threat for both unaccusative and unergative verbs. Hay et al. [1999]’s work suggests that telicity is not required to license transitive degree achievements, as indicated in (2). Likewise, the atelic directed motion constructions in (3) falsify the notion that causatives of unergative manner of motion verbs are licensed by telicity. This talk employs an aspect-based approach to causative licensing, but argues that affectedness, rather than telicity, is the pertinent aspectual consideration.

This account also explains why both degree achievements and certain directed motion constructions are acceptable with both ‘for an hour’ and ‘in an hour’ adverbials, as such events are both durative and delimited. Wolff [2003] finds that alternant ‘lexical’ causatives are acceptable descriptions of direct causatives but that a periphrastic causative ECM phrase is required for discribing indirectly caused events, as depicted in Figure 1. A semantics (Figure 3.) based on Krifka [1998]’s event and part structures is developed. The predicate A holds iff a subpart and (effect) subevent are associated, and $<$ is Krifka [1998]’s precedence relation. Every such subevent is preceded by either another subevent, or the last subevent of the causing event, deriving direct cause semantics. A direct causative’s event structure allows one-to-many mapping of cause subevents to effect subevents, congruent with Figure 1b. The durativity of the event is homomorphic with the affected entity’s part structure.

Thus, Complex Objects [Beavers, 2008], possessing initiation, duration, and an end, permit causation. However, Minimally Complex Objects [Beavers, 2008] are insufficiently complex to license causative force: Activities because their causation would require a constant ‘resupply’ of agency; Achievements (4) because they are non-durative and spontaneous. Complex Object Accomplishments represent the minimum of event complexity required to sustain causative force.

(1) The window broke. Pat broke the window.
 The soldiers marched to their tents. The general marched the soldiers* (to the tents)
 [Levin and Rappaport-Havov, 1995]

 a. The workers widened the road for an hour/in an hour.
 b. The chef heated the soup for an hour/in an hour.

(3) a. John waltzed Matilda around and around the room for hours.
 b. John ran the dog up and down the path for hours. [Folli and Harley, 2006, 8]

(4) The dog appeared. * John appeared the dog.
 The letter arrived. * John arrived the letter.
Figure 1: Direct and Indirect Causation [Wolff, 2003, 2]

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Caus?</th>
<th>Un accusative</th>
<th>Unergative</th>
<th>For...?</th>
<th>In...?</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Yes</td>
<td>Degree Ach./Change of State</td>
<td>Directed Motion</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MCO (Activity)</td>
<td>No</td>
<td>None</td>
<td>Manner of Motion</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>MCO (Achievement)</td>
<td>No</td>
<td>‘True Unaccusative’</td>
<td>None</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 2: Causative Typology

\[
\lambda e_c \lambda e_e \lambda x_a \exists e_c \exists e_e \forall e_{e'} (\text{Cause}(e_c, e_e) \rightarrow A(e_c, x_a) \land \exists x_{a'} \exists e_{e'} (A(e_{e'}, x_{a'}) \land \lnot A(e_{e'}, x_{a'}) \land (Part(x_a, x_{a'}) \land Part(e_e, e_{e'}))) \land (\text{Cause}(e_{e'}, e_{e''}) \land (e_{e'} < e_{e''}) \lor \exists e_{e''} (\text{Cause}(e_{e''}, e_{e''}) \land A(e_{e''}, x_{a'}) \land Part(e_e, e_{e''}) \land ((e_{e'} < e_{e''}) \land (e_{e''} < e_{e'}))))
\]

Figure 3: Semantics of Voice

References

