A Repair-by-Ellipsis Approach to Control

Introduction: Backward control is frequently used as evidence for the movement theory of control (MTC). In this paper, however, I argue that the MTC does not work for Korean backward control, contra Monahan (2003) and Polinsky (2007). I propose that (i) forward control is an instance of repair-by ellipsis: forward control takes place when the Caseless embedded subject is deleted to avoid the Case Filter and (ii) backward control is an instance of default Case assignment: if the Caseless embedded subject is not recoverable, it cannot be deleted and so it is assigned default Case as a last resort.

Puzzle: In Korean the overt embedded subject may serve as a controller for the implicit goal of a matrix predicate, as illustrated by (1b). This phenomenon, which is called backward control, appears to support the MTC. The MTC, however, seems to be empirically inadequate if we consider how the controller is determined in Korean. Notice that sentences (1a), (2) and (3) have the same matrix predicate, but the controller is different. In Korean the controller is determined by the semantic type of C. The comp lako in (1a) is an imperative form, the comp cako in (2) is proposative, and the comp tako in (3) is indicative. If the comp is imperative, the goal is a controller, if it is proposative, the controller is a split antecedent consisting of the agent and the goal, and if it is indicative, the agent is a controller. The MTC is not compatible with the fact that the antecedent is not determined by the closest NP but by the semantics of the comps. If the MTC is not a viable option, the question, then, is how we can explain backward control.

Proposal: The fundamental question regarding control is why the embedded subject is not pronounced. I propose a repair-by-ellipsis approach to this question. The gist of the claim is that the embedded subject in control constructions cannot be assigned Case, and the Caseless subject is deleted to avoid the Case Filter. For instance, the subject cannot be assigned Case at the infinitival construction like (4a). The Case problem, however, can be repaired if the offending constituent is deleted. It is possible to delete the embedded subject in (4a), for it is identical with the matrix subject. Therefore, (4b) is generated.

Backward control is peculiar in that the embedded subject is assigned Case, even if it occurs in a non-finite clause. In fact, the overt reflexive subject is permitted in Korean forward control if it is emphatic, as shown by (5). It is well-known that deletion is subject to the Principle of Recoverability. In (6a) the embedded subject is not identical with its controller, since it has the feature [+emphatic]. I propose that in this context the default [+nominative] Case is assigned to the subject. Backward control is another case in which deletion is not permitted. In (7a) the embedded subject Mary is Caseless. But we cannot delete it, for there is no antecedent for Mary. So default Case is assigned to it as a last resort. The ungrammaticality of (8) illustrates that the embedded subject must be deleted if there is an overt controller. The anaphoric relation between the embedded subject and the implicit goal is straightforward, for the imperative comp lako requires that the embedded subject and the matrix goal be identical.

Extension: This line of approach can be extended to English Adjunct Control. It is controversial about the nature of the null subject in the adjunct clauses like (9a). If we assume that it is PRO, it is mysterious why the overt subject may be licensed when the matrix subject and the embedded subject are not identical, as shown by (9b). If, on the other hand, we assume that it is pro, the following question arises: why isn’t pro licensed in the finite clauses? I propose that there is no overt embedded subject in (9a) because Case cannot be assigned to the embedded subject and the Caseless subject is deleted under identity in order to avoid the Case Filter. In (11a), however, the embedded subject his mother is not identical with the matrix subject, so that it cannot be deleted. In this context it is assigned default Case. I propose that English Complement Control can be explained in the same fashion, as (12a-b) illustrate.

Conclusion: In short, if the embedded Caseless subject is recoverable, it is deleted, and if not, it is assigned Case by default. This claim amounts to saying that Rosenbaum’s (1967) Equi-NP deletion is on the right tract: control is not movement but deletion. After examining Korean and English, this paper will go on to explore the empirical question of how far the deletion approach can be extended.
Data and References

(1) a. Tom-un Mary-\{eykey, lul\} [Xitlena-lako] seltukhayessta. (forward)
Tom-top Mary-\{dative, acc\} [Xi leave-imperative comp] persuaded
b. Tom-un Xi [Mary-ki tlena-lako] seltukhayessta. (backward)
Tom-top Xi [Mary-nom leave-comp] persuaded
‘Tom persuaded Mary to leave’

(2) Tom-un Mary-\{eykey, lul\} [Xi+ ttena-cako] seltukhayessta.
Tom-top Mary-\{dative, acc\} [Xi+ leave-proposative comp] persuaded
‘Tom persuaded Mary that they should leave together’

(3) Tom-un Mary-eykey [Xi ttenan-tako] seltukhayessta.
Tom-top Mary-dative [Xi leave-indicative comp] persuaded
‘Tom persuaded Mary by saying ‘I will leave’.

(4) a. Tom-un [caki ttena-lyeko] nolyekhayessta: deletion under identity
Tom-top [self leave-comp] tried

Tom-top [emphatic self-nom leave-indicative comp] tried
‘Tom tried to leave’ (The bold face stands for an emphatic expression)

(6) a. Tom-un [caki ttena-lyeko] nolyekhayessta: default Case assignment
Tom-top [emphatic self leave-comp] tried
Tom-top [emphatic self-nom leave-comp] tried

(7) a. Tom-un Xi [Mary-ki tlena-lako] seltukhayessta: default Case assignment
Tom-top [Mary leave-comp] persuaded
b. Tom-un Xi [Mary-ka tlena-lako] seltukhayessta.
Tom-top [Mary-nom leave-comp] persuaded
‘Tom persuaded Mary to leave’

(8) * Tom-un Mary-luli [caki-ka/kunye-ka ttena-lako] seltukhayessta:
Tom-top Mary-acc [self-nom/she-nom leave-comp] persuaded

(9) a. Being sick, John decided not to go on a picnic.
b. His mother being sick, John decided not to go on a picnic.

(10) a. He being sick, John decided not to go on a picnic: repair by ellipsis
b. He, being sick, John decided not to go on a picnic.

(11) a. His mother being sick, John decided not to go on a picnic: default Case assignment
b. His mother being sick, John decided not to go on a picnic

(12) a. John tried [CP he to leave]: repair by ellipsis
b. John tried [CP he to leave]