Synopsis. The goal of this paper is to provide an argument that phases should be defined by Case-valuation based on an account of a scope puzzle in the Nominative/Accusative conversion in Japanese. (1) shows nominative objects, but not accusative objects, can take scope over the potential suffix in the Japanese potential construction (Sano 1983, Tada 1992). I follow Nomura (2005) and assume that nominative objects can take scope under the potential suffix even though this is not preferred for pragmatic reasons. I argue these scope data are best accounted for by postulating a QR of *dake* ‘only’ (Sano 1983), which is bound by domains of Case-valuation. The analysis also has an implication for determining the landing site of short scrambling.

Previous Analyses. Koizumi (1994), Nomura (2005), among others, explain (1) in terms of Case movement, by assuming that while accusative objects are Case-checked in SpecvP, taking scope under the potential suffix, nominative objects move for Case-licensing to SpecTP, thereby taking scope over the potential suffix. Although this analysis is quite intriguing, there is a case where the nominative object takes high scope without Case-motion, which indicates such movement is not required for high scope. The embedded object in the causative construction can be marked nominative if the matrix verb is accompanied by a potential suffix (Saito and Hoshi 1998)) and the nominative object takes scope over the potential suffix (2). Importantly, it has been argued that this embedded object cannot move to SpecTP. While the causee can be passivized (3), the embedded object cannot be (4), due to a Relativized Minimality violation (Kiguchi 2006). Given this, we are led to conclude that nominative objects can take scope over the potential suffix without A-movement.

Analysis. Assuming *dake* in Japanese undergoes QR (Sano 1983), I propose that this QR is bound to the domains of Case-valuation. The derivation of (1) with the accusative object is given in (4)a. As *v* values Case of the object, QR of *dake* vP bound. As a result, *dake* takes scope under the potential verb. The derivation of (1) with the nominative object is given in (4)b. The Case-feature of *v* is absorbed by –*rare* ‘can’ (Ura 1996), and the object is Case-valued by C-T. As a result, QR of *dake* is no longer vP bound. *Dake* thus can take scope over the potential verb. This analysis also captures (2), which is problematic for the previous analyses. In (5), –*rare* absorbs the Case-feature of matrix *v*, which is assigned to the embedded object. As a result, as the matrix vP is not a bounding domain for QR of *dake*, *dake* takes scope over the matrix potential verb. Importantly, since this movement is QR, not A-movement, the causee does not show the intervention effect noted above.

Case-valuation and phases. The present analysis has an implication for the definition of phases. Of importance here is the fact that *dake* takes scope phase-externally, which is shown by the scopal interaction between *dake* and a raising predicate –*sooda* ‘likely’, which embeds a sentence. *Dake* in accusative objects cannot scope over the raising predicate (6)), but *dake* in unaccusative subjects takes scope both above and under the raising predicate (7). This indicates that transitive, but not unaccusative, vPs show the bounding effect of QR, which is in line with Chomsky’s (2000, 2001) proposal that transitive, but not unaccusative, vPs are phases. Moreover, *dake* in transitive subjects can take scope both above and under the raising predicate (8) but cannot take scope over matrix predicates (9). This indicates that *dake* cannot QR across finite clauses, showing that CP phases block QR of *dake*, which confirms that QR of *dake* is phase bound. Significantly, we have seen in (1) and (2) that QR of *dake* is bound by domains of Case-valuation. It is therefore tempting to connect phasehood and Case-valuation. I conclude that phases are created via Case-valuation (Epstein and Seely 2002)). The analysis predicts that *dake* can QR across transitive vPs if vs do not value Case. This prediction is borne out by (2). Here, the embedded object moves out of the embedded vP, which does not value Case. Note that it is difficult to extend Bobaljik and Wurmbrand’s (2007) suggestion that QR of *dake* interacts with presence or absence of vP because complements of the causative morpheme have (at least) vPs (see Murasugi and Hashimoto 2005) regardless of the Case of the embedded object.

Consequence. Given the Case-phase bound nature of QR of *dake*, we can now investigate the landing site of short scrambling. While Kitahara (2002) and Nemoto (1993) argue short scrambling is vP adjunction, Takano (2000) and Ura (2000) argue it is VP adjunction. Note first that accusative objects in ditransitives must scope under the potential morpheme (9). Importantly, in (11), where the direct object undergoes short scrambling, the object still cannot scope over the potential morpheme. Given that QR of *dake* cannot take place across vP phase, (11) indicates that the landing site of short scrambling must be below vP, which would then block QR of *dake*. It follows short scrambling is VP adjunction, rather than vP adjunction. If short scrambling were vP adjunction, an edge position which is visible to the next phase, the object should be able to scope over –*rare*. (Note in this respect that if the object clearly moves above vP, it can take scope over –*rare* (12)).
(1) Takashi-ga migite-dake-o/ga tumur-e-ta.
Takashi-NOM right eye-only-ACC/NOM close-can-past
‘Takashi can close only his right eye.’ NOM (can > only, only > can) ACC (can > only, *only > can)
(2) Takashi-ni(wa) saru-ni migite-dake-ga age-sase-rare-ta.
Takashi-DAT(top) monkey-DAT right-hand-only-NOM raise-cause-can-past
‘Takashi could make a monkey raise only his right hand.’ NOM (can > only, only > can)
(3) a. Daiku-ga t_i ie-o tate-sase-rare-ta.
carpenter-NOM house-ACC build-cause-pass-past
‘Carpenters were made to build a house.’
house-NOM carpenter-DAT build-cause-pass-past
‘A house was made carpenters to build.’
(4) a [C\[T\{\text{rare}\}_p \text{Subj}\{\text{rare}\}_p \text{PRO}\{\text{rare}\}_p \text{v}_{\text{VP}}\text{[OBJ]}}][\text{uK}]
(Order Irrelevant)
 b [C\[T\{\text{rare}\}_p \text{Subj}\{\text{rare}\}_p \text{PRO}\{\text{rare}\}_p \text{v}_{\text{VP}}\text{[OBJ]}}][\text{uK}]
(Order Irrelevant)
(5) [C\[T\{\text{rare}\}_p \text{Subj}\{\text{rare}\}_p \text{PRO}\{\text{rare}\}_p \text{v}_{\text{VP}}\text{monkey-dat}_{\text{v-sase}}\text{[\text{rare}\text{PRO}v[\text{VP}][\text{OBJ}]}}][\text{uK}]
(Order Irrelevant)
(6) Takashi-ga migite-dake-o age-soo-da.
Takashi-NOM right-hand-only-ACC raise-likely-cop
‘Takashi is likely to raise only his right hand.’ (likely > only, *only > likely)
(7) (This member-GEN among-top/First.of.all) Takashi-only-NOM stage-from fall-likely-cop
‘Only Takashi is likely to fall from the stage.’ (likely > only, only > likely)
(8) (This member-GEN among-top/First.of.all) Takashi-only-NOM song-ACC sing-likely-cop
‘Only Takashi is likely to sing a song.’ (likely > only, only > likely)
(9) Takashi-ga aru-seito-dake-ga kasikoi-to omot-ta.
Takashi-NOM one-student-only-NOM smart-comp think-past
‘Takashi thought that only one student is smart.’ (think > only, *only > think)
(10) Takashi-ga Mary-ni migite-dake-o/ga miser-are-ta.
Takashi-NOM Mary-DAT right-hand-only-ACC/NOM show-can-past
‘Takashi could show Mary only his right hand.’NOM(can > only, only > can) ACC(can > only, *only > can)
(11) Takashi-ga migite-dake-o/ga [Mary-ni t_i miser]-are-ta.
Takashi-NOM right-hand-only-ACC/NOM Mary-DAT show-can-past
‘Takashi could show Mary only his right hand.’NOM(can > only, only > can) ACC(can > only, *only > can)
(12) Migite-dake-o Takashi-ga [Mary-ni t_i miser]-are-ta.
right-hand-only-ACC Takashi-NOM Mary-DAT show-can-past
‘Takashi could show Mary only his right hand.’ ACC(can > only, (?)*only > can)

Selected References: