1 Overview

- Lexical items can be divided into “strata” based on their phonological and phonotactic behavior.
 - These strata correspond to both the origin of the lexical item as well as the time period during which the lexical item entered the language.
 - Kiparsky noted that these changes are gradual and hierarchical, with older strata showing heavier phonotactic restrictions.

- Itô and Mester (1995, 1998) capture this generalization through their Core-Periphery model within Stratal Optimality Theory.
 - They posit multiple synchronic strata with the same overall ranking of markedness constraints.
 * Each stratum defined by a separate ranking of faithfulness constraints.
 * These different FAITH rankings within the same overall ranking of markedness constraints lead to the hierarchical nature of lexical strata.
 * This more constrained model provides a clear advantage over Copphonology models, which are free to posit an arbitrarily large number of arbitrarily ordered constraint sets within a language.

- I, on the other hand, argue for a return to a more traditional view of OT, namely that only one ranking of constraints exists that accounts for all synchronic behavior of these strata.
 - The multiple rankings of faithfulness constraints proposed by Ito and Mester reflect the constraint rankings present at different stages throughout the history of a language.
 - The hierarchical nature of the strata comes from the slow, gradual nature of sound change, and the constraint reranking that results from sound change.
 - Once a given constraint reranking has occurred due to sound change, younger generations of speakers can no longer generate these forms on-line using productive phonology.
* All alternations previously generated by the old constraint ranking must therefore be stored separately in the mental lexicon as the new speakers perceive them, effectively updating the lexical representation of these items for the new generation.

- This *lexical updating* process has the effect of moving the alternation from the synchronic phonology to the mental lexicon.

2 Japanese Strata

2.1 Itô and Mester’s *Core-Periphery* Analysis

- According to Itô & Mester (1993), Japanese can be divided into four distinct strata: native, established Chinese loans, assimilated foreign words, and unassimilated foreign words.

- In Itô and Mester’s analysis, each stratum is characterized by surface adherence to a different number of the stratum-defining constraint sets in their analysis, listed below:

 (1)

 a. **SYLLSTRUC**: Prevents complex onsets and codas, as well as limiting codas to segments without place

 b. **NOVOICEDGEM (NO-DD)**: No voiced obstruent geminates (*bb*, etc.)

 c. **NOVOICELESSLAB (NO-P)**: No singleton-p: prevents nongeminate [p]

 d. **NONAS VOICELESS (NO-NT)**: Postnasal obstruents must be voiced (*nt*, etc.)

- The behavior of the four strata related to the constraints in (1) is shown in the table below, reproduced from (Itô & Mester 2004: 557).

<table>
<thead>
<tr>
<th></th>
<th>SYLLSTRUC</th>
<th>NO-DD</th>
<th>NO-P</th>
<th>NO-NT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamato</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sino-Japanese</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Assimilated Foreign</td>
<td>✓</td>
<td>✓</td>
<td>violated</td>
<td>violated</td>
</tr>
<tr>
<td>Unassimilated Foreign</td>
<td>✓</td>
<td>violated</td>
<td>violated</td>
<td>violated</td>
</tr>
</tbody>
</table>

- Note the hierarchical nature of the strata with regard to the constraints posited.

 - (Also note for later that the organization of the hierarchy corresponds to the age of the strata, with strata borrowed progressively later violating progressively more constraints.)

- To constrain their model, Itô and Mester require that a single ranking of constraints apply to every stratum of a language’s lexicon, with the caveat that *FAITH* will rank lowest in the core stratum, but will be progressively higher ranked as one moves out through the strata toward the periphery of the language’s lexicon.
This approach is demonstrated below, in which we see two separate lexical items with an identical underlying form, /pan/, resulting in two different surface forms since they belong to two different strata.

- The assimilated foreign loan stratum values FAITH over NO-P, resulting in the more faithful surface form [pan], while the Sino-Japanese loan stratum values NO-P over NO-PFAITH, resulting in the surface form [han].

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Root} & \text{Gerundive} & \text{Past} \\
\hline
\text{sin-} & \text{sin-de} & \text{sin-da} \\
\text{yom-} & \text{yon-de} & \text{yon-da} \\
\text{tob-} & \text{ton-de} & \text{ton-da} \\
\text{mi-} & \text{mi-te} & \text{mi-ta} \\
\text{kaw-} & \text{kat-te} & \text{kat-ta} \\
\hline
\end{array}
\]

- In the Sino-Japanese stratum, on the other hand, nasal plus voiceless obstruent combinations are quite common, seen in words like hantai ‘opposite’ and sinpai ‘worry’.

- Itô and Mester’s ranking of NO-NT over FAITH in the Yamato stratum but below it in the SJ stratum effectively generates the desired forms:
However, Rice (1997) provides a list of Yamato words containing outright violations of No-NT, including examples like intiki ‘trickery’ and anta ‘you’.

* Crawford (2009) points out that anta is particularly interesting as it derives from anata via syncope, and coexists with the original form.

* In effect, this means that either the No-NT constraint did not act as predicted for this Yamato form, or that this form has somehow moved from the core toward the periphery, as it now patterns with the Sino-Japanese stratum.

* Either way, this poses a problem for this lexical indexing model. If the former, then the proposed constraints have unexplained exceptions, and if the latter, then we see that this theory has no mechanism to motivate this movement of lexical items toward the periphery of the lexicon.

* Itô & Mester (1995) call exceptions like these “undoubtedly native, but peripheral” (p. 830), but provide no explanation for their behavior.

With lexical updating, however, the analysis is straightforward.

* In Old Japanese, we see that no words with NT sequences surface at all, indicating that there was likely a highly ranked constraint preventing these sequences at the time.

* Once the constraints reranked to allow the ND sequences seen in later borrowings, D/T alternations due to the older constraint ranking now had to be lexically stored, with no current phonological basis for the surface alternation.

* This lexical storage allows subsequent grammatical processes to produce segment collocations that would have previously been illicit.

* Thus, because stratal effects are lexical and not phonological, the syncope process that produced forms like anta is free to act without violating highly ranked constraints, in opposition to the predictions of the Core-Periphery model.

The No-P Alternation

- The classifier pun ‘minute’ combines with numbers to count time.

- As a member of the Sino-Japanese stratum, it should (and used to) obey the No-P constraint.

1I assign pun and other similar borrowed classifiers like pon ‘cylindrical object’ to the SJ stratum since
Recently, however, the paradigm has levelled for some speakers in fluent speech.

The Core-Periphery model provides no motivation or explanation for this movement toward the periphery of the language.

I believe that each of these forms were lexically stored when the No-P constraint was deranked at the end of the Sino-Japanese period.

* This resulted in three similar, yet separate, stored forms, all with the meaning ‘minute’.

* As Kiparsky (2012) states, “analogue change is grammar optimization, the elimination of unmotivated grammatical complexity or idiosyncrasy” (p. 21).

* I argue that this levelling is lexical simplification, eliminating the unnecessary forms no longer motivated by active phonological processes.

Now, recall example (3), in which Itô and Mester analyze both pan ‘bread’ and han ‘group’ with the same underlying form, /pan/.

Han is a Sino-Japanese word, so when it was borrowed, initial p was not allowed in Japanese.

However, I argue that by the time the constraint reranking that allowed the borrowing of Portuguese pan without modification occurred, the prior h/p alternations had become lexically stored.

* The underlying form of han ‘group’, therefore, was updated by later generations of speakers to /han/, allowing pan ‘bread’ to be borrowed and stored as-is.

My OT analysis of pan ‘bread’ and han ‘group’ becomes trivial, with only one constraint ranking, as seen below:

<table>
<thead>
<tr>
<th>Expected Compound</th>
<th>New Compound</th>
<th>Number Morpheme</th>
<th>Counter Morpheme</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pronunciation</td>
<td>Pronunciation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ip-pun</td>
<td>ip-pun</td>
<td>ichi ‘one’</td>
<td>pun</td>
<td>‘one minute’</td>
</tr>
<tr>
<td>ni-pun</td>
<td>ni-pun</td>
<td>ni ‘two’</td>
<td>pun</td>
<td>‘two minutes’</td>
</tr>
<tr>
<td>san-bun</td>
<td>san-pun</td>
<td>san ‘three’</td>
<td>pun</td>
<td>‘three minutes’</td>
</tr>
</tbody>
</table>

they date from the same period and have the same origin. The Core-Periphery model would then predict that pun and pon should violate No-NT, yet forms like sanbun and sanbon show otherwise. These morphemes seem, therefore, to have moved toward the Core of the lexicon in another cross-stratum discrepancy.
No-DD Alternations

– According to Itô and Mester’s analysis, borrowings from English ending with a voiced obstruent are adapted with a geminate obstruent that is either voiced or voiceless depending on whether the word is an unassimilated or assimilated borrowing, respectively.

* Unassimilated loans rank NO-DD lower than FAITH, while assimilated loans rank it higher.

(8)

<table>
<thead>
<tr>
<th>SyllStruc</th>
<th>Faith/Unassimilated</th>
<th>No-DD</th>
<th>Faith/Assimilated</th>
</tr>
</thead>
<tbody>
<tr>
<td>bag</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/bed/ ‘bed’</td>
<td>ε[beddo]</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Unassimilated</td>
<td>[betto]</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>/bag/ ‘bag’</td>
<td>[baggu]</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Assimilated</td>
<td>ε[bakku]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

– Crawford (2009), however, shows that there are in fact five different possible adaptation mechanisms for English borrowings with a final voiced consonant: voiced geminates, devoiced geminates, voiced singletons, devoiced singletons, and a lengthened vowel before a voiced singleton.

– In fact, since the earliest attestation of these types of borrowings, geminating the voiced stop has been consistently the most popular mechanism for adapting them to Japanese pronunciation. Crawford states the following about the data:

“Among the entire set of words collected from Arakawa, the only ones which are listed with three or more attestations with a voiceless geminate are betto ‘bed’, handobakku ‘handbag’, operapakku ‘operabag’, and burudokku ‘bulldog’. Of these, both bed and operabag are also attested with alternate forms, beddo and operabaggu, that have a voiced geminate.” (p. 61)

– Given the complexity of the borrowing data in the chart above and the paucity of the devoiced geminate data, NO-DD seems an odd candidate for a constraint that differentiates recent loanword strata.

– It seems more likely that these different adaptation mechanisms are due to different constraint rankings in the dialects or even idiolects of the original borrowers, and that different forms of borrowed terms diffused unequally through the rest of the language.

– Whatever the reason for the existence of these multiple borrowing mechanisms, it seems fairly clear that once successfully borrowed and lexicalized, these alternations are governed not by separate rankings of phonological constraints, but by these lexical items possessing distinct underlying forms.
• In this section, we have seen three separate difficulties for the Core-Periphery model: exceptions created by synchronic phonological processes, exceptions created by lexical processes (analogy), and exceptions due to oversimplification of complex data.

• In my analysis, however, these processes are not only unproblematic, but are motivated and expected.

3 Capturing generalizations: English fricative data

• In modern English, /f/, /s/, and /θ/ all contrast with their voiced counterparts, /v/, /z/, and /ð/ word-initially, medially, and finally.

• In Old English, however, these pairs were allophones, with the voiceless forms appearing initially and finally, and the voiced forms appearing medially between voiced segments.

• Geminate voiceless fricatives, which are no longer present in modern English, could appear medially and finally.

(9) English fricative distribution before the 12th century

<table>
<thead>
<tr>
<th></th>
<th>Foot-initial</th>
<th>Foot-medial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short (vl)</td>
<td>f</td>
<td>-</td>
<td>f</td>
</tr>
<tr>
<td>Short (vd)</td>
<td>-</td>
<td>v</td>
<td>-</td>
</tr>
<tr>
<td>Long</td>
<td>-</td>
<td>f:</td>
<td>f:</td>
</tr>
<tr>
<td>Dental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short (vl)</td>
<td>θ</td>
<td>-</td>
<td>θ</td>
</tr>
<tr>
<td>Short (vd)</td>
<td>-</td>
<td>δ</td>
<td>-</td>
</tr>
<tr>
<td>Long</td>
<td>-</td>
<td>θ:</td>
<td>θ:</td>
</tr>
<tr>
<td>Alveolar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short (vd)</td>
<td>s</td>
<td>-</td>
<td>s</td>
</tr>
<tr>
<td>Long</td>
<td>-</td>
<td>s:</td>
<td>s:</td>
</tr>
</tbody>
</table>

• By the 14th century, however, the following four changes occurred to generate the modern distribution of English fricatives.

 – Final [ə] was deleted, making final voiced and voiceless fricatives phonemic.
 – Initial [f] and [v] were borrowed, placing them in phonemic distribution as well.
 – Prosodic developments led to voicing of initial [ð] in words like the and this.
 – Geminates degeminated.
Modern English fricative distribution

<table>
<thead>
<tr>
<th></th>
<th>Foot-initial</th>
<th>Foot-medial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labial</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>Short (vl)</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>Short (vd)</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Dental</td>
<td>θ</td>
<td>θ</td>
<td>θ</td>
</tr>
<tr>
<td>Short (vl)</td>
<td>θ</td>
<td>θ</td>
<td>θ</td>
</tr>
<tr>
<td>Short (vd)</td>
<td>δ</td>
<td>δ</td>
<td>δ</td>
</tr>
<tr>
<td>Alveolar</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Short (vl)</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Short (vd)</td>
<td>z</td>
<td>z</td>
<td>z</td>
</tr>
<tr>
<td>Palatal</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>Short (vl)</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>Short (vd)</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>

English Fricative Strata

- English has a large number of lexical strata, but only two are relevant for our purposes.
 - First is the ‘Native’ stratum, composed of all lexical items present in Old English before the adaptation of loanwords with initial voiced fricatives.
 - The second I call the ‘Loan’ stratum, characterized by a reranking of Faith to ensure the surfacing of underlying /v/ and /z/.
 - Importantly, early Latin loans, such as vannus (borrowed into English as ‘fan’) belong to the Native stratum since they show initial devoicing.
 - Later Latin loans which retain their initial voicing belong to the Loan stratum.

Capturing Generalizations

- The four major changes described above were realized by different processes almost simultaneously.
 - This is unlikely to be a coincidence; more probably, some systematic, foundational aspect of the English consonant system changed fundamentally.
 - The generalizations about these changes are simple and straightforward: **initial and final voiced fricatives appeared**, and **geminates degeminated**.
 - The constraint rerankings that made these changes possible allowed English speakers to distinguish fricative voicing in initial position, so borrowings with initial voiced fricatives could now be adapted as such.

- These generalizations are easily capturable by reranking Faith, which makes this data set an ideal candidate for the **Core-Periphery** model.
 - However, again we see a process which affects only a few words creating problems for **CP** generalizations.
 - Native words like *the* have developed initial voicing, so a highly-ranked constraint that prevents initial and final voicing can no longer synchronically account for all members of the Native stratum.
 - They now require either an ad hoc highly-ranked constraint just for these few items (unsatisfying) or ad hoc movement to **Loan** stratum (unmotivated).
Instead, I argue that only one synchronic ranking of constraints each is necessary to accurately describe the phonological processes of Old, Middle, and Modern English.

* Old English had a highly-ranked constraint preventing initial/final voicing.
* During the Middle English period, FAITH was reranked above this constraint, allowing initial and final voicing to surface.
* This constraint reranking allowed Native words like the, which during the Old English period were pronounced with an initial θ, to develop initial voicing.
* I thus capture the stratal generalizations historically through a diachronic reranking of constraints, while not using these rerankings to restrict the modern phonology of the language.
* This allows a more accurate description of these generalizations, as no specific treatment is required by the phonology synchronically for lexical items that used to, but now no longer behave accordingly.
* The surface alternations between Native vocabulary and Loans which require separate strata in the Core-Periphery model, I instead attribute to differences in underlying representation that are simply maintained on the surface.

4 Conclusions

- Alternations accounted for by indexing models are often lexical residue of earlier constraint rankings.
- Allowing underlying forms of lexical items to update in response to sound change eliminates the need for multiple synchronic constraint rankings.
- Stratal generalizations are descriptively and historically interesting, but lexical items that fall through the cracks are expected as analogy and other processes subsequently affect individual lexical items.
- Accordingly, the Core-Periphery model encounters problems when grammatical processes affect individual lexical items.
 - One could stipulate that these lexical items have moved from one stratum to another, but the Core-Periphery model provides no mechanism or, more importantly, motivation for this movement.
- We also must realize that determining the proper underlying form for a given lexical item is far more important than previously recognized in OT, since the outputs of a function are only as good as its inputs.
 - The idea that OT itself places no constraints on potential inputs is central and necessary to the theoretical framework, but there is no rule to my knowledge against recognizing that OT-external factors, such as cognitive and acquisition processes, must.
Rethinking Lexical Indexing Models

The 91st Annual Meeting of the LSA

References

Ryan Hearn – rdh238@cornell.edu