We use counterfactuals all the time:

1. If Alice had gone to the party, Bob would have stayed home.
2. If the movie had been any good, I wouldn’t have fallen asleep.
3. If there hadn’t been traffic, we would have been on time.

We can use them to talk about things we know to be false or things we’re uncertain about

(1) typically implies that Alice didn’t go to the party and Bob did
It also communicates some relation between the two events

There are different ways for the events in (1) to be related

1. If Alice had gone to the party, Bob would have stayed home.

- Does Bob try to avoid Alice?
 - Maybe he’s shy
 - Maybe he doesn’t like her

- Do other circumstances prevent them from attending parties together?
 - Maybe they’re a couple on a tight budget
 - Maybe Bob is actually Alice in disguise

- Does Alice try to avoid Bob?
 - Unlike the other scenarios, this one does not seem to jive with (1)...

Our Proposal

- Counterfactuals denote sets of relationships between events
- We use the mechanics of structural equation models to represent these relationships
- This provides a rich set of tools we use to define a typology of explanatory strategies
- Our analysis cleanly distinguishes two different kinds of ‘backtracking’
- It also provides a principled account of certain kinds of mutually incompatible counterfactuals
To capture relationships between events, we use structured possible worlds (Starr 2014). Worlds are event variables, their values, and dependencies between them. Just like truth values, we can use the (non)existence of dependencies to discriminate among worlds. We model these dependencies using Structural Equation Models (SEMs) as formalized in Pearl 2000.

Structural Equation Models (SEMs)

- Allows for the modeling not only of variables but also dependencies.
- Models consist of:
 - Nodes: Circles; Variables/Events
 - Edges: Arrows; Dependencies
 - Labeled with equations

For convenience and simplicity, our examples are:

- Two-valued
- Deterministic
- This framework and analysis also handles multi-valued and/or probabilistic systems
Unlike Pearl, we take the SEM not as a given but as a goal.
Rather than structures within which to evaluate the truth of a counterfactual, we interpret SEMs as candidate explanations.
Counterfactuals denote sets of such explanations.

Graph as given

Graph as goal

Outline

1. Overview
2. Some preliminaries
3. Our proposal
4. Conclusion
Counterfactuals assert some degree of covariance between the antecedent and consequent

(4) If I had pushed this button, the rocket would have launched.

They implicate a direct (causal) dependence of consequent on antecedent ($C = A$)

This implicature can be canceled (5) or strengthened (6):

(5) If I had pushed this button, the rocket would have launched, but pushing this button doesn’t directly cause the rocket to launch.

(6) If I had pushed this button, the rocket would have launched, and (in fact) pushing this button directly causes the rocket to launch.

Sometimes the direct dependency is problematic

Any of these reasons might make us reject the simple direct dependency of the consequent on the antecedent

- In other words, reject the $C = A$ edge
- But the counterfactual stipulates some covariance
- Trying to maintain the cooperativity of the speaker’s contribution, we search for an explanation to make the counterfactual true
- Three possible ways to deal with this problematic dependence:
 - ADDITIONAL cause
 - COMMON cause
 - INTERMEDIATE cause

Call these explanatory strategies

There are many reasons to reject an explanation (including the implicated direct dependency)

- It might contradict prior knowledge
- It might violate a law of good explanations
 - e.g. by positing an effect that is temporally prior to its cause
- It might not satisfy the contextual parameter for specificity

(1) If Alice had gone to the party, Bob would have stayed home.

The implicated simple dependency of (1):

But Alice’s attendance doesn’t directly cause Bob to be elsewhere

There are other explanations
Overview

Some preliminaries
- The hearer might suppose that the consequent is dependent not solely on the antecedent but also on some additional cause.
- For example, a common interpretation of (1) might lead one to believe that Bob hates Alice.
- We can consider Bob’s hatred of Alice as an additional node in our model.

\[H, A \rightarrow B \]

\[B = \neg (A \land H) \]

Conclusion

References

Overview

Some preliminaries
- The dependence of B on A is still present, but it’s been modified.
 - The \(B = \neg A \) edge is no longer part of the model.
 - The antecedent and consequent covary only in the right H-conditions.

\[H, A \rightarrow B \]

\[B = \neg (A \land H) \]

Conclusion

References

Overview

Some preliminaries
- The hearer might suppose that the consequent isn’t dependent upon the antecedent at all.
- Instead, both antecedent and consequent depend on some common cause.
- They still covary, but have no interdependence.
- For example, imagine that Alice & Bob flip a coin to determine who attends.

\[A \rightarrow C \]

\[B \rightarrow \neg C \]

\[A = C \]

\[B = \neg C \]

Conclusion

References

Overview

Some preliminaries
- The hearer might suppose that the consequent depends on the antecedent only by means of some intermediate cause.
- The antecedent and consequent still covary, but without positing a direct causal dependency.
- For example, imagine that Alice brings her cat wherever she goes, and Bob is deathly allergic to cats.

\[A \rightarrow C \]

\[C = A \]

\[B \rightarrow \neg C \]

\[B = \neg C \]

Conclusion

References

A fourth explanatory strategy?

- Reversing the simple causal relationship also allows the antecedent and consequent to covary

(1) If Alice had gone to the party, Bob would have stayed home.

\[
A = \neg B
\]

- This classical *backtracker* has the consequent as the cause
- This model is rejected as an interpretation of (1)
- It’s available with a double-auxiliary construction, as in (7)

(7) If Alice had gone to the party, Bob would have had to have stayed home.

A note on backtracking

- Two different things referred to as *backtracking*

\[
A = \neg B
\]

- Reversing causal direction
- Classic philosophy literature
- Double-aux environment
- ‘Upstream’ reasoning
- Recent psychology literature
- Available in (1)

How do we update with what we’ve learned?

- Once an acceptable explanation is found, we have to integrate it with our extant body of knowledge
- With structured possible worlds, our knowledge includes not just facts about variables but also dependencies
- We can model our knowledge as one persistent SEM
- When consolidating, we integrate dependencies, not variable values
- Counterfactuals *can* inform us about actual values via presupposition, accommodation
- We don’t want to update with Alice’s counterfactual attendance

There are at least two mechanisms involved in consolidation

1. **Addition**
 - Extending the graph
 - Possibly add new nodes
 - Add new dependencies among nodes

2. **Expansion**
 - Looking deeper into the internal mechanism of a single node
 - Explode one node into multiple nodes
 - Retains incoming/outgoing dependencies of the original node

- After consolidation, deduce values of new nodes, if necessary
Consider a world where Alice and Bob are married, and live with their young son Doug.

1. If Alice had gone to the party, Bob would have stayed home.
2. If Alice had gone to the party, Doug would have been home alone.

(1) and (8) are each felicitous individually:
- A felicitous utterance of one precludes a felicitous utterance of the other.
- Any account of how we update our knowledge with counterfactuals should explain this.

This consolidation process gives us insight into interactions between counterfactuals:

1. If Alice had gone to the party, Bob would have stayed home.
2. If Alice had gone to the party, Doug would have been home alone.

Updating with (1) adds a covariance between A and $\neg B$ to our knowledge base:
- Alice and Bob have opposite party-attendance values.
- Updating with (8) requires that A and B have the same value.
- The model we build after hearing one of (1)/(8) precludes the other.

We can use structured possible worlds to model dependencies, not just facts:
- We propose using them to model informative counterfactuals.
- Doing so gets us a natural way to typologize explanatory strategies.
Conclusion

- Our analysis also neatly captures the distinction between different senses of *backtracking*
 - Classical philosophical backtrackers reverse the generally implicated direction of dependence
 - Recent psychological uses of the term refer to explanations including at least one instance of *common cause*
- Also provides insight into the mechanism that explains mutually infelicitous counterfactuals
