

Overview

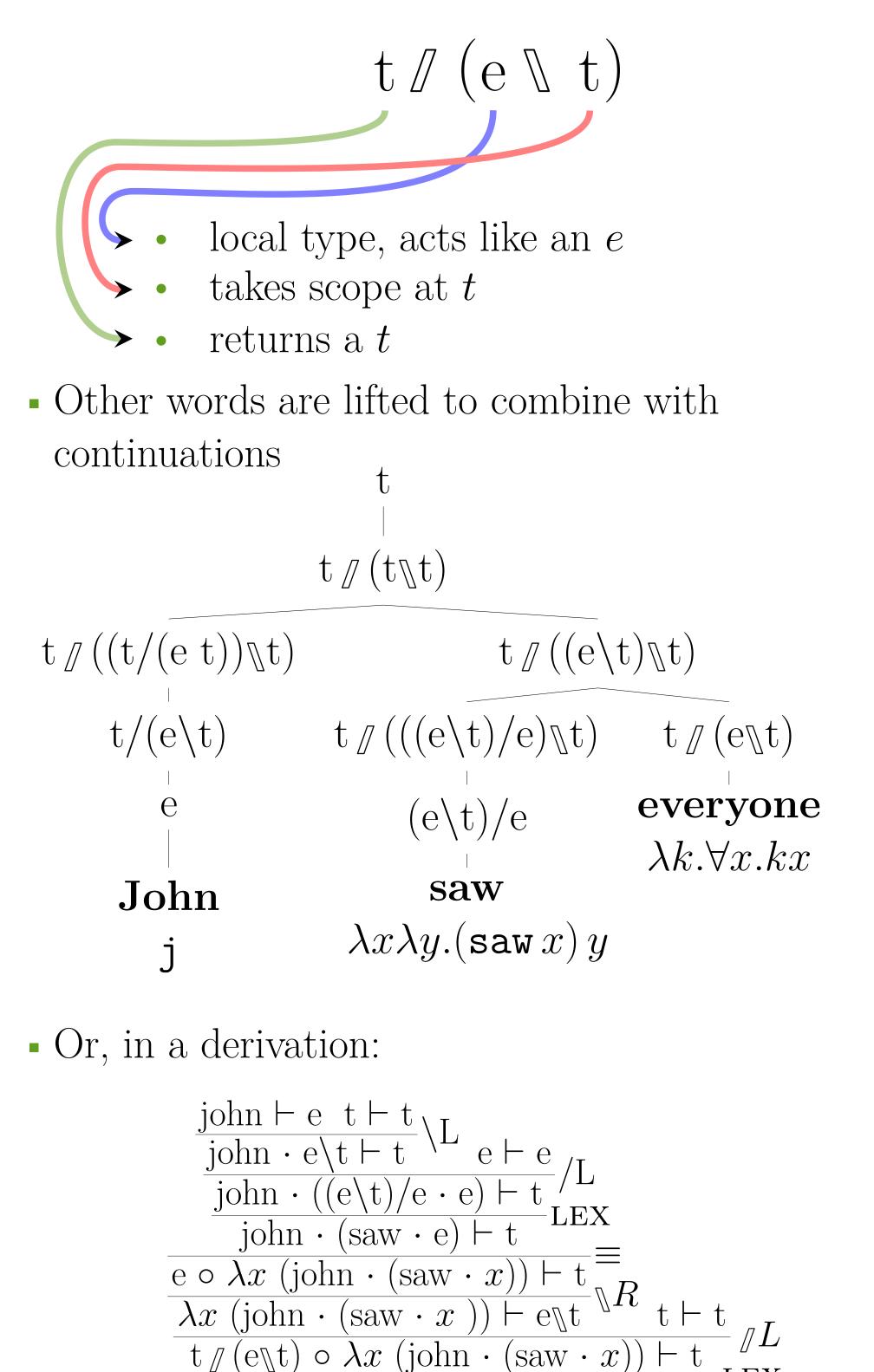
I use continuations to model clausal comparatives like (1):

(1) Mary is 6'' taller than Bill is wide.

- I define continuation-friendly operators for the comparative and a scoping degree operator
- This derives the right truth conditions without QR or LF movement

Continuations

- Continuations are type-lifters for scope-taking
- Barker and Shan (2014) use them for quantifiers
- Behave as some type locally, but take scope
- For example, a generalized quantifier, rather than being type $t/(e \setminus t)$, is expressed with type:



everyone $\circ \lambda x$ (john $\cdot (saw \cdot x)) \vdash t$

 $john \cdot (saw \cdot everyone) \vdash t$

Continuations for Comparatives

Todd Snider (Cornell University, Linguistics) PLC 39

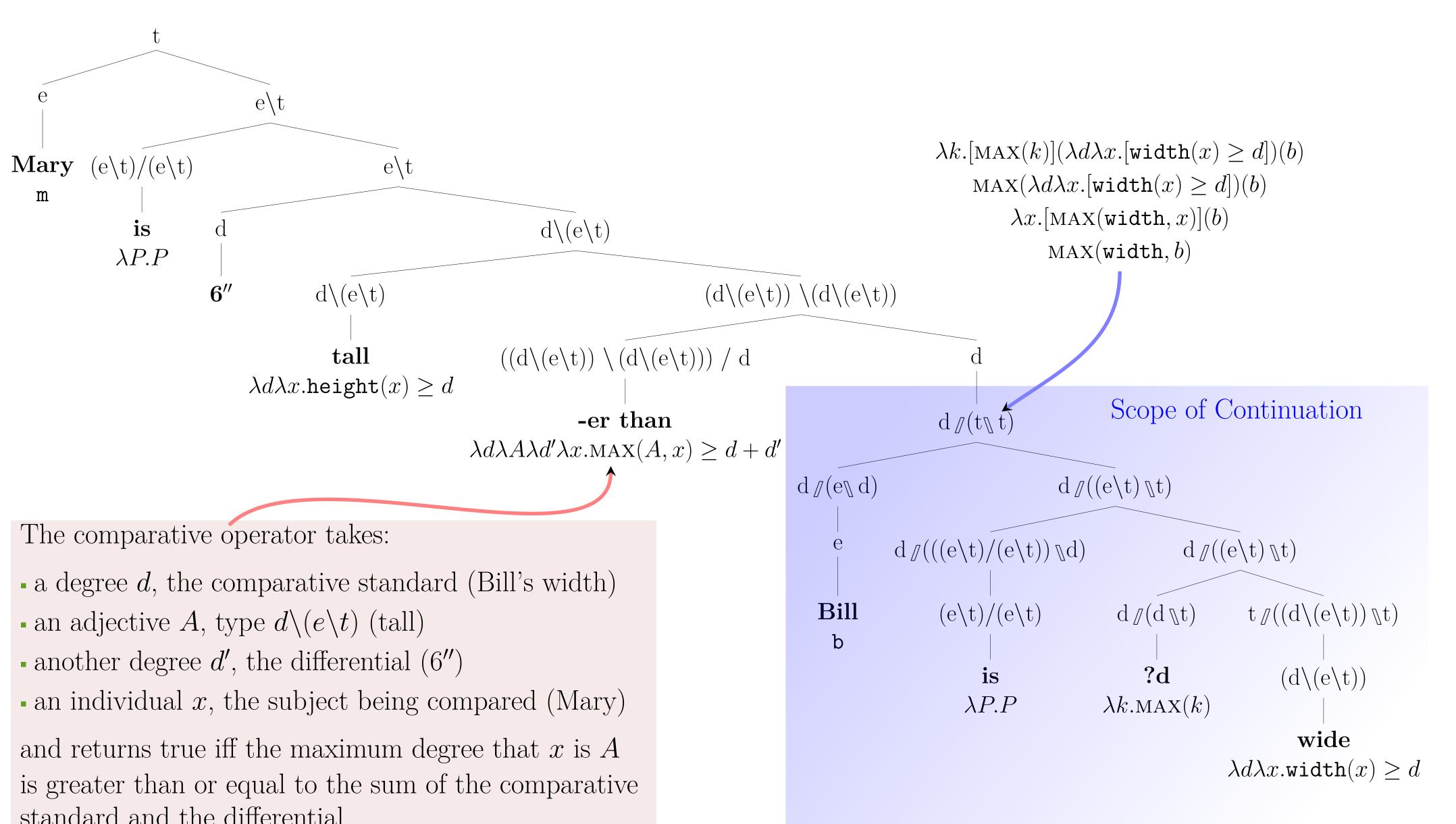
Movement Analysis

- Movement accounts like Heim 2000 require two post-surface movements before interpretation
- Move the comparative standard before the adjective
- 2" wh-movement of a covert operator from the degreeargument position of an adjective... the trace [being] interpreted as a variable over degrees" (Heim 2000: 51)
- For a sentence like (1), then, the following LF and truth conditions: (2) $[Mary is 6'' [-er than [wh_1 Bill is t_1 wide]] tall] = MAX(height, m) \ge MAX(width, b) + 6''$

Moving to Continuations

I replace wh-movement with a scoping degree operator of type $(d \not (d \land t))$ acts locally like a *degree* takes scope at t (Bill is wide) getting the right truth conditions without movement.

A Full Derivation



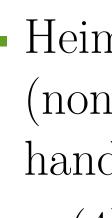
standard and the differential

• We get a much simpler LF and derive the right truth conditions: $[Mary is 6'' tall -er than Bill is ?d wide] = MAX(height, m) \ge MAX(width, b) + 6''$ (3)• Equally compatible with an analysis that uses intervals rather than degrees Scoping operator becomes type (D / (D h)), uses μ instead of MAX

Mary is [er than ...] taller than ...

... than wh_1 Bill is t_1 wide

```
returns a degree
```



(4) Mary is 6'' taller than every boy is. Because comparatives and quantifiers both use continuations, they interact without modification

(t ∥(e∖ 1 ev $\lambda f \lambda k. \forall x.$

• Still need the Heim-Kennedy constraint to prevent certain scope combinations, though...

Thanks to Chris Barker, Miloje Despic, Molly Diesing, Mats Rooth, and the Cornell Semantics Group.

Contact Information

• Web: http://conf.ling.cornell.edu/tsnider • Email: tns35@cornell.edu

Scoping over Quantifiers

• Heim's MAX account requires a third type of (non-local) movement (e.g., of a Π operator) to handle quantified standards, as in (4):

	,			
		$\mathop{\mathrm{D}}_{\mid}$ $\mathop{\mathrm{D}}_{\mathbb{Z}}(\operatorname{t}_{\mathbb{V}}\operatorname{t})$		
		$(t \mathbb{Z}(t \mathbb{T} t)) \mathbb{T} t)$		
$D \operatorname{\mathbb{Z}}((\operatorname{t} \operatorname{\mathbb{Z}}(\operatorname{e} \operatorname{\mathbb{T}} t)) \operatorname{\mathbb{T}} D)$		$D \mathbb{Z}((t \mathbb{Z}((e \setminus t) \mathbb{Q}t)) \mathbb{Q}t)$		
$t \mathbb{Z}(e \mathbb{T} t)$		$D \mathbb{Z}((e \setminus t) \mathbb{Q}t)$		
(t))/(e t)	e∖t	$D \mathbb{Z}(((e \setminus t) / (e \setminus t)) \mathbb{Z}D)$	D	$r((e \setminus t) \ t)$
$\mathbf{very} \\ x.fx \to kx$	$\mathbf{boy} \\ \lambda x.(\mathtt{boy}(x))$	$(e \ t)/(e \ t)$ is $\lambda P.P$	$\widetilde{\begin{array}{c} \mathbf{D} \mathop{\mathbb{Z}}(\mathbf{D} \mathop{\mathbb{V}}\mathbf{t}) \\ \mathbf{N} \\ \mathbf{N} \\ \lambda k. \mu(k) \end{array}}$	$t \mathbb{Z}((D \setminus (e \setminus t)) \mathbb{U}t)$ $(D \setminus (e \setminus t))$ $tall$
				$\lambda I \lambda x.\texttt{height}(x) \in I$

Conclusion

• We can use continuations to handle

comparatives without movement

• No additional mechanisms needed for scope interactions

• Compatible with a Containment Hypothesis denotation for the superlative *-est*

• Compatible with differential-modifying exactly, less than, more than, which change interpretations of MAX (Fleisher 2014)

Selected References

Chris Barker and Chung-Chieh Shan. Continuations and Natural Language. Oxford University Press, 2014.

Nicholas Fleisher. Comparing theories of quantifiers in than clauses: Lessons from downward-entailing differentials. Ms. University of Wisconsin-Milwaukee, 2014.

Irene Heim. Degree operators and scope. Semantics and Linguistic Theory (SALT), volume 10. CLC Publications, 2000.

Acknowledgements