Subject-Object Asymmetries in Korean Sentence Comprehension

Jiwon Yun (jy249@cornell.edu)
John Whitman (jbw2@cornell.edu)
John Hale (jthale@cornell.edu)

Department of Linguistics, 203 Morrill Hall, Cornell University
Ithaca, NY 14850 USA

Abstract

The Entropy Reduction Hypothesis (Hale, 2006) derives the subject-object asymmetry in Korean relative clauses. This asymmetry has been observed by Kwon, Polinsky, and Kluender (2006), among others. Agreement between the Entropy Reduction predictions and the available empirical data suggests that the heightened comprehension difficulty attested in object-extracted relatives is due to distinctive incremental parser states associated with comparatively greater temporary ambiguity.

Keywords: sentence comprehension, relative clauses, Korean, probabilistic grammar, Entropy Reduction, syntax

Introduction

Relative clauses (RCs) have long been objects of fascination for cognitive scientists interested in language comprehension (Kaplan, 1974). In the well-known “subject-extracted” (SRC) and “object-extracted” (ORC) cases, a large literature exists. In languages such as English and French, a processing advantage for SRCs has been confirmed in a wide variety of measures including phoneme-monitoring (Frauenfelder, Segui, & Mehler, 1980), eye-fixations (Holmes & O’Regan, 1981), reading times (King & Just, 1991), PET (Stromswold, Caplan, Alpert, & Rauch, 1996) and fMRI (Just, Carpenter, Keller, Eddy, & Thulborn, 1996). It has been suggested that the SRC advantage may be a processing universal (Lin, 2008). If ORCs are harder than SRCs in all languages, then what is it about human sentence comprehension that makes this so? The Korean language is a key test for any universal processing theory because it is syntactically different from English and French. These differences include verbal clauses and pronominal RCs.

In this paper, we offer an account of the SRC/ORC asymmetry in terms of the information-processing difficulty of incremental parsing in general. This proposal relates the hardness of parsing to syntactic facts about Korean. A language-independent complexity metric known as Entropy Reduction (Wilson & Carroll, 1954; Hale, 2003, 2006) correctly derives the SRC advantage when applied with a Korean grammar. This demonstration supports the claim that human comprehension difficulty reflects the kind of information-processing work that Entropy Reduction quantifies.¹

Theories of the Subject-Object Asymmetry

As an empirical phenomenon, the SRC/ORC processing asymmetry is well-established. However, its implications as regards the architecture or mechanisms of human language comprehension remain controversial. Three broad classes of theory have been advanced. Linear Distance theories, illustrated in Figure 1, point to a greater number of intervening elements between the relativized position and the head noun to which it is meaningfully related. The boxed e notation stands for an “empty” element. Particular theories of Linear Distance offer alternative ways of measuring the separation between this omitted position and the head noun (Wanner & Maratsos, 1978; Gibson, 2000; Lewis & Vasishth, 2005). These theories all provide an adequate account of the English pattern, and in some cases relate this prediction to plausible mechanisms of human sentence comprehension. They are thwarted, however by data that confirm an SRC-over-ORC processing advantage in Korean (O’Grady, Lee, & Choo, 2003; Kwon et al., 2006; Lee, 2007). Figure 1(b) shows how theories of this type derive the wrong prediction for Korean.

The second broad class includes Structural Distance theories. The simplest theory of this kind maintains that ORCs are harder because the relativized element is more deeply embedded when it is an Object. If ORCs are formed by a movement rule, then this movement would “cross” both a VP node and an S node to arrive at its surface position (O’Grady, 1997, 179). Hawkins (2004, 175) singles-out “a connected path that must be accessed for gap identification and processing.” Hawkins’ path is shown using dotted branches in Figure 2. This path is shorter for SRCs in both Korean and English. This general account is thus adequate but not very precise. It leaves open, for instance, the question of where exactly greater difficulty should start to accrue during incremental processing.

The third broad class contains the Information-Theoretical approaches. The Entropy Reduction Hypothesis (ERH) fits into this class. It holds that a person’s difficulty at a word reflects the amount by which that word helped him or her to ascertain which construction the speaker intends. The ERH uses the concept of entropy to quantify the average uncertainty about derivations consistent with an observed initial string. This entropy is high when there are many equiprobable continuations and low when there are just a few continuations or the probability distribution on them is sharply concentrated. This quantity stands-in for the degree of confusion in the comprehender’s mind. When it is reduced

¹A longer companion paper, Hale (under review), develops an automaton model of the sentence comprehension process. It presents a generalized left-corner parser that operates in accordance with the Entropy Reduction Hypothesis when its decisions about how to resolve nondeterminism are guided by experience.
MG poses that the headnoun moves in relativization. We use the
of the four clause-types shown in Figure 3. Our analysis sup-
consider subject-extraction and object-extraction in each
This grammar is written in Stabler’s Minimalist Grammars
(adjunct clauses, no difference is predicted. In simple matrix clauses and
complement clauses. However, empty elements in subject po-
tive model of an incremental comprehender’s degree of con-
tent at the embedded verb. This prediction also follows in
Table 1 summarizes the ERH predictions: SRCs are easier
easier to comprehend than ORCs. This prediction also follows in complement clauses. However, empty elements in subject po-
adjunct clauses, no difference is predicted. In simple matrix clauses and
complement clauses. However, empty elements in subject po-
Table 1: Average Entropy Reduction in bits-per-word

<table>
<thead>
<tr>
<th>Clause type</th>
<th>SBJ Extraction</th>
<th>OBJ Extraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix Clause</td>
<td>19.6</td>
<td>19.6</td>
</tr>
<tr>
<td>Adjunct Clause</td>
<td>34.66</td>
<td>34.66</td>
</tr>
<tr>
<td>Complement Clause</td>
<td>32.1</td>
<td>42.98</td>
</tr>
<tr>
<td>Relative Clause</td>
<td>27.13</td>
<td>35.65</td>
</tr>
</tbody>
</table>
Word-by-word Entropy Reduction graphs, shown in Figure 6, illustrate how predicted difficulty peaks coincide with the positions that disambiguate clause-type and the role of omitted elements. This is indicated with double-circles in Figure 5. The subject-object asymmetry in RCs is predicted to show up on the headnoun at the position marked N in Figure 6(d). This prediction matches the findings of Kwon et al. (2006), who observe a reading time asymmetry at this point.

Discussion

The Entropy Reduction account of the subject advantage in relative clauses and complement clauses is rooted in the idea that comprehenders are in differentially uncertain states of mind at the point marked ③ in Figure 5. In the object-extraction cases with the prefix string N NOM V-ADN, this uncertainty is 32.28 bits. In the corresponding subject-extraction cases with the prefix string N ACC V-ADN, the corresponding uncertainty value is only 23.76 bits. The conditional entropy values at ④ are exactly the same in both cases. Thus, the ERH models the greater difficulty in the object cases with greater conditional entropy at point ③.

The disparity between these conditional entropies reflects contrasting numbers of alternative continuations. These continuations correspond to different roles the prefix string might play at the matrix level. Figure 7 enumerates possible continuations accessible from point ③ with respect to the grammatical role of the given prefix in the matrix clause. Figure 7(a) illustrates that the prefix with omitted Subject N ACC V-ADN could end up either in a complex matrix subject, or in a complex matrix object.

The corresponding prefix N NOM V-ADN, with omitted Object, presents an incremental comprehender with even greater temporary ambiguity. As shown on line 3 of Figure 7(b), this prefix could be the beginning of a reading on which the nominative-marked noun is a complete matrix-level subject on its own. This possibility is licensed by the grammar and accurately reflects Korean as shown in (1)–(3) below.

(1)

kica -ka [SRC, E] kongkyekhan | uywon -ul
reporter -NOM gap pro attack.ADN senator -ACC

2Our notational conventions include NOM for nominative case, ACC for accusative, ADV for adverbial, ADN for adnominal and DECL for declarative.
Figure 5: Continuations signal clause-types

Figure 6: Word-by-word comprehension difficulty predictions derived by the INFORMATION-THEORETICAL Entropy Reduction Hypothesis. Horizontal axes labels name word classes. SBJ abbreviates “subject-extracted”, OBJ “object-extracted”. Clause-types (a)–(d) are as in Figure 3.
Figure 7: Alternative syntactic roles for elements of two prefix strings. The bold material has been heard by point 3. Brackets indicate embedded clauses.

\[\text{(a) prefix with omitted subject: N ACC V-ADN} \]
\[\text{(b) prefix with omitted object: N NOM V-ADN} \]

Related work

These results offer a new perspective on the work of Ishizuka, Nakatani, and Gibson (2006). Using Japanese RCs, which are structurally similar to Korean, these authors show that the penalty for ORC processing can be mitigated or even eliminated if certain readings are pragmatically suppressed by prior discourse. The ERH suggests that disambiguating those readings is exactly the source of the ORC penalty. It quantifies the difficulty of coping with all the available alternatives.

Our results also suggest a lack of subject-object asymmetry in adjunct clauses. We would like to emphasize that this does not entail a contradiction with the experimental results of Kwon et al. (2006). The design of this experiment leverages that fact that a matrix clause noun is a felicitous controller of pro when it appears in an embedded clause. Indeed, these authors suggest that “the identification of the gap in an adjunct clause does not involve any syntactic operations.” It is thus appropriate that our syntax-only approach predicts no distinction between missing Subject and Object in this clause type. The ERH might naturally be combined with a pragmatic component to yield a broader theory. We leave this extension to future work.

Conclusion

The ERH, in conjunction with an appropriate formal grammar, can account for the subject advantage in Korean RCs. Its predictions cannot be summarized by simply saying that missing objects are always harder; for instance both types of main clauses are predicted to be equally easy. However they do include the prediction of a subject-object asymmetry in complement clauses with omitted arguments. The effect should appear on the word sasil ‘fact’. This prediction would not follow on a STRUCTURAL DISTANCE account, since no movement relation exists between pro and sasil in that construction. If a subject-object asymmetry were to be experimentally observed at that point, this would leave the ERH as the only theory able to explain the English as well as the Korean results. We hope that our work encourages empirical investigation of this case.

Acknowledgments

This research was supported by a Small Grant from the Cornell University Institute for the Social Sciences.

Appendix: Examples

The Minimalist Grammar used to derive the comprehension-difficulty predictions graphed in Figure 6 covers all of the examples listed below. The combinatorics of the promotion analysis imply the existence of other grammatical strings such as those in examples (1)–(3).

matrix clause with a pro-subject

\[\text{uywon -ul kongkyekhayyssta.} \]
\[\text{senator -ACC attacked} \]
\[\text{‘Someone attacked the senator.’} \]

adjunct clause with a pro-subject

\[\text{uywon -ul kongkyekhayse kica -ka} \]
\[\text{senator -ACC attack.ADN reporter -NOM} \]
\[\text{yamyenghaycyessta.} \]
\[\text{became famous} \]
\[\text{‘Because someone/he attacked the senator, the reporter became famous.’} \]

complement clause with a pro-subject

\[\text{uywon -ul kongkyekhan sasil -i palkhyecyessta.} \]
\[\text{senator -ACC attack.ADN fact -NOM was revealed} \]
\[\text{‘The fact that someone attacked the senator was revealed.’} \]

subject relative clauses

\[\text{uywon -ul kongkyekhan kica -ka} \]
\[\text{senator -ACC attack.ADN reporter -NOM} \]
\[\text{yamyenghaycyessta.} \]
\[\text{became famous} \]
\[\text{‘The reporter who attacked the senator became famous.’} \]

matrix clause with a pro-object

\[\text{kica -ka kongkyekhayyssta.} \]
\[\text{reporter -NOM attacked} \]
\[\text{‘The reporter attacked someone.’} \]
adjunct clause with a pro-object

\[\text{complement clause with a pro-object} \]

\[k\text{ica} -k\text{a} \ k\text{ongkyekhayse uywon} -i \] reporter -NOM attack. ADN senator -NOM yamyenghayyessta. became.famous

‘Because the reporter attacked someone/him, the senator became famous.’

complement clause with a pro-object

\[k\text{ica} -k\text{a} \ k\text{ongkyekhan sasil} -i \ palkhyecyessta. \] reporter -NOM attack. ADN fact -NOM was.revealed

‘The fact that the reporter attacked someone was revealed.’

object relative clauses

\[k\text{ica} -k\text{a} \ k\text{ongkyekhan uywon} -i \] reporter -NOM attack. ADN senator -NOM yamyenghayyessta. became.famous

‘The senator whom the reporter attacked became famous.’

References

Hale, J. (2003, March). The information conveyed by words complement clause with a pro

adjunct clause with a pro

Hale, J. (under review). What a rational parser would do.

Michaelis, J. (2001). Derivational minimalism is mildly context-sensitive. In M. Moortgat (Ed.), Logical aspects of computational linguistics (pp. 179–198). Springer. (Selected papers from LACL98)

