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Abstract

This study develops a connection between
human parsing preferences and feature se-
lection rankings in a multilingual depen-
dency parser. The results reveal that fea-
ture weights reflect the typological charac-
teristics of three languages. Accounting for
these differences leads to greater precision
in modeling garden path data.

1 Introduction1

Human sentence processing models are often im-
plemented by probabilistic parsers (Jurafsky, 1996;
Roark, 2004; Hale, 2001; Demberg and Keller,
2007; Boston et al., 2008b), which use statistics de-
rived from corpus data to determine sentential analy-
ses. The probability space that informs these parsers
can be partitioned into a wide variety of features that
are based on characteristics of the internal parser
state, the string, or any suitable combination that al-
lows the parser to appropriately model the human
sentence processor. This leads to a high-dimension
feature space that requires exponential amounts of
resources, and can be costly to compute.

Feature selection is a machine learning technique
that helps to reduce the number of dimensions in
a feature space, and thus avoid the “curse of di-
mensionality” (Guyon and Elisseeff, 2003). The
technique determines the relevancy of features for
a model according to a particular optimization func-
tion, and can be implemented using a variety of clas-
sification techniques. It also allows for better accu-
racy in parsing for natural language processing (At-
tardi et al., 2007), which indicates it may also be sen-
sitive to the typological characteristics of languages.

1The authors thank John Hale and Rong Jin for their valu-
able comments and guidance.

In this paper we address the question of whether
feature selection relates to typological differences
between Chinese, German, and English. Further, we
demonstrate that feature selection improves parsing
accuracy for human sentence processing models. In
the next section, we introduce our model.

2 A human sentence processing model

Our model is a statistical dependency parser that
uses Dependency Grammar, a linguistic framework
that specifies syntactic structure in terms of word-
to-word connections. It is based on Nivre’s (2004)
design, which defines parser states in terms of four
data structures, detailed in Table 1. Theσ data

σ A stack of already-parsed unreduced words.
τ An ordered input list of words.
h A function from dependent words to heads.
d A function from dependent words to arc types.

Table 1: Nivre-defined parser configuration.

structure contains already-parsed words while theτ

data structure lists unparsed words. Theh and d
functions aggregate the dependency information be-
tween words.

Parser states are manipulated with four op-
erations, or transitions. TheLeft-Arc and
Right-Arc transitions draw dependency relations
between the elements at the top ofσ and the top of
τ . TheShift andReduce transitions manipulate
σ. This architecture renders the parser equivalent to
a stack-based automaton.

The parser accurately models human garden path
data in English, German, and Chinese (Boston and
Hale, 2007; Boston et al., 2008a). Garden path sen-
tences are temporary, local ambiguities the human
sentence processor is susceptible to (Frazier, 1987).



(a) Human-preferred analysis (b) Globally correct analysis

Figure 1: Main verb-reduced relative ambiguity parsing preferences.

The sentence in Figure 1(a) exemplifies a strong gar-
den path in English, where the verb “raced” is ini-
tially considered as the main verb of the sentence.
This is marked by a red dashed arc to “horse”, sig-
nifying the noun is its dependent in the Dependency
Grammar framework. Further input however reveals
a second verb, “fell”, that is the actual main verb of
the sentence. This reading requires an analysis of
“raced” as the beginning of a reduced relative modi-
fying the noun, which is marked by a red dotted line
emanating from “horse” to “raced” (Figure 1(b)).

In this paper we explore the features that allow
the parser to model a milder form of garden path,
the prepositional phrase ambiguity, because the vari-
ation in attachment preferences for this garden path
in the three languages demonstrates their diverse ty-
pological characteristics. Further, it is one of only
a few garden paths that is available in all three lan-
guages.

3 Dependency Parsing Features

The parser uses probabilistic models, or features, to
inform parser decisions. The features are trained
on four newspaper corpora: the Wall Street Jour-
nal portion of the Penn Treebank (78,000 sentences)
(Marcus et al., 1993), the Negra and Tiger Version
2.0 German treebanks (70,602 sentences) (Skut et
al., 1997; Brants et al., 2004), and the Penn Chi-
nese Treebank Version 4.0 (15,162 sentences) (Xue
et al., 2004). The corpora were transformed into de-
pendency format using Yamada’s Ptb-conv 3.0 tool
(2004) for the English treebank, and Dubey’s (2004)
and Ding’s (2006) head-finders for the German and
Chinese treebanks, respectively.

Of the fourteen features that inform the depen-
dency parser, six were found to be useful for distin-
guishing cross-linguistic differences in human sen-
tence processing preferences (Table 2). Four of

these features are state-based, or rely on the internal
parser state information (Stack1, Stack2, TopLeft,
and TopRight), and two are string-based (Distance
and Position).

Feature Description
Stack1 σ1 andτ1 .
Stack2 σ1 ,2 andτ1 .
TopLeft The left-most dependent ofσ1 .
TopRight The right-most dependent ofσ1 .
Distance Surface distance betweenσ1 andτ1 .
Position The string position ofτ1 .

Table 2: Dependency Parsing Features

The flowchart in Figure 2 depicts the feature-
making process for the dependency parser. The con-
verted training data is input to a parser simulation,
which outputs state and transition information for
each sentence. This collection of parser states and
transitions is used to derive the probabilities that in-
form parser decisions in the form of features. Proba-
bilities for the TopRight feature are shown in the fig-
ure. The probabilities indicate that when the right-
most element of the top ofσ is a determiner (DT),
the most probable transition isReduce. When it
is a proper noun (NNP), the most probable transi-
tion isRight-Arc. The process is repeated for all
features for all languages to derive a collection of
probabilistic models that inform parser decisions.

4 SVMs and Feature Selection

Because of the number of features for each lan-
guage, we use feature selection to decrease the
dimensions and to interpret the features in terms
of their typological characteristics. This is imple-
mented with the LIBLINEAR Support Vector Ma-
chine (SVM) classifier (Lin et al., 2008). SVMs
are often used to induce classifiers for determin-



Figure 2: The feature-making process for the dependency parser.

istic parsing, and provide high accuracy in depen-
dency parsing (Hall et al., 2006; Attardi et al., 2007).
They combine a maximum margin strategy with ker-
nel functions to map the original feature space into
a higher-dimensional space (Vapnik, 1995; Vapnik,
1998).

LIBLINEAR has a least squares SVM option
based on a logistic regression function for multi-
class classification (Lin et al., 2008), depicted in
Equation 1.

min
w

f (w) ≡
1

2
wTw+C

l∑

i=1

log(1 + e−yiw
Txi ) (1)

The second term in Equation 1 can be considered
a loss function, which the least squares SVM opti-
mizes according to the function in Equation 2.

min
w

f 2 (w) ≡
1

2
wTw+C

l∑

i=1

(max(0, 1 − yiw
Txi))

2

(2)
For this study, the inputxi is the series of configu-
rations derived from the training data with transition
prediction probabilities for each feature. The class
label yi is the set of four transitions (Left-Arc,
Right-Arc, Shift, andReduce). The output
w

∗ is an optimal weight for each feature.

The wrapper feature selection method (Kohavi
and John, 1997) uses weights output from a classi-
fier as a measure of the relevance of features (Guyon
and Elisseeff, 2003). The weights output from LIB-
LINEAR, w

∗, therefore represent a feature selection
technique, and the weights straight-forwardly corre-
late to the utility of the features for each language.

5 Results and Discussion

Table 3 provides the LIBLINEAR-derived weights
for each feature in each language. The features
are organized by rank for the languages, with fea-
ture weights adjacent. The weights determine the
strength of the feature for informing parser decisions
during parsing, with Position in English having the
strongest weight overall (1.77), and Distance in En-
glish having the lowest (-1.89).

In the following sections, we interpret the weights
with respect to typological differences between the
three languages. In particular, the results are com-
pared to the prepositional phrase (PP) attachment
ambiguity. Figure 3 shows an English example of
the ambiguity, where the PP can attach high, as in
3(a) or low, as in 3(b). The two attachments give rise
to two different but grammatical readings of the sen-



Relative Rank Chinese German English
1 Position 0.43 Distance 0.48 Position 1.77
2 TopLeft 0.32 Stack1 0.36 Stack1 0.40
3 Stack2 0.16 Position -0.02 TopRight 0.22
4 TopRight -0.16 Stack2 -0.34 Stack2 -0.40
5 Stack1 -0.20 TopLeft -1.41 TopLeft -0.58
6 Distance -0.57 TopRight -1.41 Distance -1.89

Table 3: Features Weights and Rankings

(a) Human-preferred analysis (b) Alternative analysis

Figure 3: PP-attachment ambiguity parsing preferences in English.

tence, where the PP either modifies the verb or the
noun. For example, Figure 3(a) represents the bene-
factive reading of the sentence, where the PP mod-
ifies the verb “bought”. Figure 3(b) represents the
alternative reading where the PP modifies the noun
“book”. In English, the human sentence processor
prefers the high attachment (Bever, 1970), but as
will be described below, this is not the case for all
three languages.

5.1 TopLeft in English vs. TopRight in Chinese

An interesting difference between the English and
Chinese rankings is the relative weights of the
TopLeft and TopRight features, described in Table
2. In Table 3, TopLeft has a positive weight and
is ranked highly for Chinese, but low for English.
Alternatively, TopRight has a positive weight in En-
glish, but a negative weight in Chinese. This dis-
parity may arise from one of the main typological
differences between Chinese and English, head po-
sition. Chinese is a head-final language (Huang and
Li, 1995), which means that many of the heads occur
to the right of the clauses. Therefore, the left-most
dependents of the top element ofσ would provide
more information to a parser than the right-most de-
pendents. English, on the other hand, is head-initial.
In this case, we expect the right-most dependents to
be more informative.

The weights not only reflect this typological dis-
parity, but they also result in a better processing

model for human garden paths. Figures 4(a) and
4(b) demonstrate alternative readings of the Chinese
PP-Attachment ambiguity. The first is glossed as
“I know that you became sick after coming back”,
whereas the alternative is “I became sick after I
knew you came back”. Unlike English, Chinese
prefers the low-attachment for the PP, as in Figure
4(a).2

This difference in attachment preferences is pre-
dicted by the relative rankings of TopLeft and
TopRight as well. As the transition probabilities in
Table 5 demonstrate, TopLeft chooses the human-
preferred attachment in Chinese but not in English,
while TopRight chooses the human-preferred attach-
ment in English but not in Chinese. Figure 6 depicts
this preference at the parser-internal level, where the
transitions that lead to the human-preferred analysis
have higher probabilities for each language. This in-
dicates that the weights from this feature selection
method allow the parsing model to accurately pre-
dict the PP-Attachment preferences in both Chinese
and English.

5.2 Stack2 in Chinese vs. Stack1 in German

One of the main differences between the German
and Chinese weights is for the Stack1 and Stack2
features. Although we would expect Stack2 to
be ranked more highly across languages because

2Based on preferences from a Chinese native speaker judg-
ment task (n=10).



(a) Human-preferred analysis (b) Alternative analysis

Figure 4: PP-attachment ambiguity parsing preferences in Chinese.

(a) Human-preferred analysis (b) Alternative analysis

Figure 5: PP-attachment ambiguity parsing preferences in German.

Chinese English
Feature TopLeft TopRight TopLeft TopRight
Human-preferred 0.54 0.09 0.12 0.34
Alternative 0.0004 0.41 0.27 0.20

Table 4: TopLeft vs. TopRight Transition Probabilities.

(a) English (b) Chinese

Figure 6: State space diagrams of the ambiguous regions for the relevant transitions. While TopRight
chooses the human-preferred (HP) transition for English, TopLeft chooses the HP transition for Chinese.

it takes into account more information, we actu-
ally find that the Stack1 feature often performs bet-

ter at modeling garden path data cross-linguistically
(Boston et al., 2008a). The fact that Chinese prefers



Chinese German
Feature Stack1 Stack2 Stack1 Stack2
Human-preferred 0.20 0.53 0.43 0.37
Alternative 0.40 0.21 0.48 0.49

Table 5: Stack1 vs. Stack2 Transition Probabilities.

Stack2 may be an artifact of a typological differ-
ence between the two languages. Chinese is an an-
alytic language which relies more on the use of par-
ticles (i.e., separate function words) than inflection
to provide meaning (Comrie, 1989). Therefore, the
parser would require more stack information to de-
rive meaning than it would for a synthetic language
like German.

The difference in weights for these features pre-
dicts the PP-Attachment preferences for both lan-
guages as well. German, like English, prefers high-
attachment for prepositions, where they modify the
verb rather than the noun (Figure 5(a)) (Agricola,
1968). The alternative reading in Figure 5(b), while
available, would only arise for particular lexical
items. Stack1, which is given a positive weight for
German, is able to predict the human-preferred anal-
ysis because the human-preferred transition’s proba-
bility is higher in Table 5. Stack2, however, predicts
the alternative analysis. In Chinese, the opposite is
the case: Stack2 predicts the human-preferred read-
ing, whereas Stack1 does not. These results demon-
strate that the feature selection method is sensitive
to the typological differences between isolating and
synthetic languages.

5.3 Distance in German vs. Position in English

English is a configurational language, where the
word order is highly constrained within a sentence
(Ross, 1967). German, on the other hand, does not
constrain many sentential structures to set positions
(Uszkoreit, 1987). This typological difference is re-
flected by the feature selection ranking in Table 3. In
a configurational language, the position a word has
in a sentence would be an important characteristic,
which is reflected by the high weight and rank of the
Position feature for English. In a language like Ger-
man, however, Position would be less informative
than the relative distance between two words, which
is reflected by the high weight of Distance but low

weight of Position.

The feature ranking once again leads to the
correct parsing of the PP-attachment ambiguities
for the two sentences. Distance, which has a
high, positive weight for English, predicts the high-
attachment preference, whereas Position predicts
the low-attachment preference (Table 6). On the
other hand, Position chooses the human-preferred
high-attachment for German, but Distance does
not. These results indicate that the feature selec-
tion method is able to distinguish the differences be-
tween configurational and non-configurational lan-
guages, and counsels the parser to choose the
human-preferred attachment in each language.

6 Conclusion

Our results demonstrate that a wrapper feature se-
lection method implemented with an SVM learner
is able to distinguish three main typological char-
acteristics of the languages tested: head position
in English and Chinese, morphological constituents
in Chinese and German, and configurational pref-
erences in German and English. The language-
specific weights for the features additionally coun-
sel the parser to choose the human-preferred tran-
sition for the PP-Attachment ambiguity despite at-
tachment preference differences. This indicates that
feature selection can reveal how typological condi-
tions interact with human parsing preferences in a
sentence processing model, and further supports the
use of probabilistic parsers for sentence processing
research (Jurafsky, 1996).
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English German
Feature Distance Position Distance Position
Human-preferred 0.01 0.32 0.29 0.24
Alternative 0.24 0.07 0.24 0.32

Table 6: Distance vs. Position Transition Probabilities.
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