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Abstract In this paper we address the question of whether

feature selection relates to typological differences

This study develops a connection between petween Chinese, German, and English. Further, we
human parsing preferences and feature se- demonstrate that feature selection improves parsing
lection rankings in a multilingual depen-  accuracy for human sentence processing models. In

dency parser. The results reveal that fea- the next section, we introduce our model.
ture weights reflect the typological charac-

teristics of three languages. Accounting for 2 A human sentence processing model
these differences leads to greater precision

in modeling garden path data. Our model is a statistical dependency parser that

uses Dependency Grammar, a linguistic framework
1 Introduction? that specifies syntactic structure in terms of word-

to-word connections. It is based on Nivre's (2004)
Human sentence processing models are often igesign, which defines parser states in terms of four

plemented by probabilistic parsers (Jurafsky, 199¢ata structures, detailed in Table 1. Thedata
Roark, 2004; Hale, 2001; Demberg and Keller,

2007; Boston et al., 2008b), which use statistics de-s A stack of already-parsed unreduced words.
rived from corpus data to determine sentential analy--  An ordered input list of words.

ses. The probability space that informs these parsers A function from dependent words to heads.
can be partitioned into a wide variety of features thatd A function from dependent words to arc types.
are based on characteristics of the internal parser

state, the string, or any suitable combination that al- Table 1: Nivre-defined parser configuration.
lows the parser to appropriately model the human

sentence processor. This leads to a high-dimensi@gucture contains already-parsed words whiletthe
feature space that requires exponential amounts @hta structure lists unparsed words. Thand d

resources, and can be costly to compute. functions aggregate the dependency information be-
Feature selection is a machine learning techniqugeen words.

that helpS to reduce the number of dimensions in Parser states are manipulated with four op-
a feature space, and thus avoid the “curse of dirations, or transitions. Théeft-Arc and

mensionality” (Guyon and Elisseeff, 2003). Thegj ght - Ar ¢ transitions draw dependency relations
technique determines the relevancy of features f@jetween the elements at the topoofind the top of
amodel according to a particular optimization func--. Theshi f t andReduce transitions manipulate
tion, and can be implemented using a variety of class This architecture renders the parser equivalent to
sification techniques. It also allows for better accuy stack-based automaton.
racy in parsing for natural language processing (At- The parser accurately models human garden path
sitive to the typological characteristics of languagesaje, 2007; Boston et al., 2008a). Garden path sen-
The authors thank John Hale and Rong Jin for their valyténces are temporary, local ambiguities the human
able comments and guidance. sentence processor is susceptible to (Frazier, 1987).
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The horse raced past the barn fell The horse raced past the barn fell

(a) Human-preferred analysis (b) Globally correct analysis

Figure 1: Main verb-reduced relative ambiguity parsinggnences.

The sentence in Figure 1(a) exemplifies a strong gahese features are state-based, or rely on the internal
den path in English, where the verb “raced” is iniparser state information (Stackl, Stack2, TopLeft,
tially considered as the main verb of the sentencand TopRight), and two are string-based (Distance
This is marked by a red dashed arc to “horse”, sigand Position).
nifying the noun is its dependent in the Dependency o
Grammar framework. Further input however revealsFéature  Description
a second verb, “fell”, that is the actual main verb of Stackl o, andr;.
the sentence. This reading requires an analysis optack2 oy 2 andr;.
“raced” as the beginning of a reduced relative modi- ToPLeft  The left-most dependent of; .
fying the noun, which is marked by a red dotted line TOPRight  The right-most dependent f.
emanating from “horse” to “raced” (Figure 1(b)). ~ Distance  Surface distance betweenandr ;.

In this paper we explore the features that allow POSition  The string position af; .
the parser to model a milder form of garden path,
the prepositional phrase ambiguity, because the vari-
ation in attachment preferences for this garden path o _
in the three languages demonstrates their diverse ty-1 1€ flowchart in Figure 2 depicts the feature-
pological characteristics. Further, it is one of onlyMaking process for the dependency parser. The con-

a few garden paths that is available in all three lan/€"€d training data is input to a parser simulation,
guages which outputs state and transition information for

each sentence. This collection of parser states and
transitions is used to derive the probabilities that in-
form parser decisions in the form of features. Proba-

The parser uses probabilistic models, or features, Rilities for the TopRight feature are shown in the fig-
inform parser decisions. The features are trainédf€. The probabilities indicate that when the right-
on four newspaper corpora: the Wall Street Joumost element of the top of is a determiner (DT),
nal portion of the Penn Treebank (78,000 sentence)e most probable transition Reduce. When it
(Marcus et al., 1993), the Negra and Tiger Versio# @ proper noun (NNP), the most probable transi-
2.0 German treebanks (70,602 sentences) (Skutt&n isRi ght - Arc. The process is repeated for all
al., 1997; Brants et al., 2004), and the Penn chfeatures for all languages to derive a collection of
nese Treebank Version 4.0 (15,162 sentences) (Xgéobabilistic models that inform parser decisions.
et al., 2004). The corpora were transformed into de; .
pendency format using Yamada’s Ptb-conv 3.0 tooA} SVMsand Feature Selection
(2004) for the English treebank, and Dubey’s (2004Because of the number of features for each lan-
and Ding’s (2006) head-finders for the German anguage, we use feature selection to decrease the
Chinese treebanks, respectively. dimensions and to interpret the features in terms
Of the fourteen features that inform the depenef their typological characteristics. This is imple-
dency parser, six were found to be useful for distinmented with the LIBLINEAR Support Vector Ma-
guishing cross-linguistic differences in human senchine (SVM) classifier (Lin et al., 2008). SVMs
tence processing preferences (Table 2). Four afe often used to induce classifiers for determin-

Table 2: Dependency Parsing Features

3 Dependency Parsing Features



English German Chinese
Wall Street Journal Corpus Negra + Tiger Corpora Penn Chinese Treebank

78,000 sentences 70,602 sentences 15,162 sentences

Running the corpus data... I l P L
¢ G | loves uy
...ylelds parser states for all | |
parses of all training sentences... T | Luke =
Simulate Parser | |
...that are used to condition hd |
the probability of transitions. The  dog g
TopRight ¢
Part-of-Speech Left-Arc Right-Are Shift Reduce
DT 0.24810688 0.2226955 0.2202927 0.30890492
NNP 0.21380931 0.33572054 I 0.15575115 I 0.294719

Figure 2: The feature-making process for the dependensepar

istic parsing, and provide high accuracy in depen- The wrapper feature selection method (Kohavi
dency parsing (Hall et al., 2006; Attardi et al., 2007)and John, 1997) uses weights output from a classi-
They combine a maximum margin strategy with kerfier as a measure of the relevance of features (Guyon
nel functions to map the original feature space intand Elisseeff, 2003). The weights output from LIB-
a higher-dimensional space (Vapnik, 1995; Vapnik.INEAR, w*, therefore represent a feature selection
1998). technique, and the weights straight-forwardly corre-
LIBLINEAR has a least squares SVM optionlate to the utility of the features for each language.
based on a logistic regression function for multi-
class classification (Lin et al., 2008), depicted ir5 Results and Discussion
Equation 1.
I Table 3 provides the LIBLINEAR-derived weights
minf(w) = leWJF CZlog(l +efyinxz) (1) for each feature in each language. The features
w 2 =1 are organized by rank for the languages, with fea-

The second term in Equation 1 can be considerdyre weights adjacent. The weights determine the
a loss function, which the least squares SVM Optistrength of the feature for informing parser decisions

mizes according to the function in Equation 2. during parsing, with Position in English having the
strongest weight overall (1.77), and Distance in En-

)2 glish having the lowest (-1.89).
In the following sections, we interpret the weights
(2) with respect to typological differences between the
For this study, the input; is the series of configu- three languages. In particular, the results are com-
rations derived from the training data with transitiorpared to the prepositional phrase (PP) attachment
prediction probabilities for each feature. The clasambiguity. Figure 3 shows an English example of
label y; is the set of four transitionsLéft - Arc, the ambiguity, where the PP can attach high, as in
Ri ght - Arc, Shi ft, andReduce). The output 3(a) or low, as in 3(b). The two attachments give rise
w* is an optimal weight for each feature. to two different but grammatical readings of the sen-

l
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Relative Rank Chinese German English

1 Position 0.43 Distance 0.48 Position 1.77
TopLeft 0.32 Stackl 0.36 Stackl 0.40
Stack?2 0.16 Position -0.02 TopRight 0.22
TopRight -0.16 Stack2 -0.34 Stack2 -0.40
Stackl -0.20 TopLeft -1.41 ToplLeft -0.58
Distance -0.57 TopRight -1.41 Distance -1.89

OOk, WN

Table 3: Features Weights and Rankings
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John bought the book for Susan John bought the book for  Susan

NNP VBD DT NN IN NNP NNP VBD DT NN IN NNP
(@) Human-preferred analysis (b) Alternative analysis

Figure 3: PP-attachment ambiguity parsing preferencesiigh.

tence, where the PP either modifies the verb or thmodel for human garden paths. Figures 4(a) and
noun. For example, Figure 3(a) represents the benétb) demonstrate alternative readings of the Chinese
factive reading of the sentence, where the PP mo&P-Attachment ambiguity. The first is glossed as
ifies the verb “bought”. Figure 3(b) represents thél know that you became sick after coming back”,
alternative reading where the PP modifies the nounhereas the alternative is “I became sick after |
“book”. In English, the human sentence processdinew you came back”. Unlike English, Chinese
prefers the high attachment (Bever, 1970), but gsrefers the low-attachment for the PP, as in Figure
will be described below, this is not the case for all(a)?
three languages. This difference in attachment preferences is pre-
, _ S , dicted by the relative rankings of TopLeft and
51 TopLeftin English vs. TopRightin Chinese  14pRight as well. As the transition probabilities in
An interesting difference between the English and@able 5 demonstrate, TopLeft chooses the human-
Chinese rankings is the relative weights of thereferred attachment in Chinese but not in English,
TopLeft and TopRight features, described in Tablevhile TopRight chooses the human-preferred attach-
2. In Table 3, TopLeft has a positive weight andment in English but not in Chinese. Figure 6 depicts
is ranked highly for Chinese, but low for English.this preference at the parser-internal level, where the
Alternatively, TopRight has a positive weight in En-transitions that lead to the human-preferred analysis
glish, but a negative weight in Chinese. This dishave higher probabilities for each language. This in-
parity may arise from one of the main typologicaldicates that the weights from this feature selection
differences between Chinese and English, head pmethod allow the parsing model to accurately pre-
sition. Chinese is a head-final language (Huang ardict the PP-Attachment preferences in both Chinese
Li, 1995), which means that many of the heads occland English.
to the right of the clauses. Therefore, the left-most ] ) ]
dependents of the top element @fwould provide 52 Stack2in Chinesevs. Stacklin German
more information to a parser than the right-most de@ne of the main differences between the German
pendents. English, on the other hand, is head-initiahnd Chinese weights is for the Stackl and Stack2
In this case, we expect the right-most dependents teatures.  Although we would expect Stack2 to
be more informative. be ranked more highly across languages because

T_he weights not only reerF:t this typological di_s' 2Based on preferences from a Chinese native speaker judg-
parity, but they also result in a better processingnent task (n=10).
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Wo zhidao ni huilai yihou bing le Wo zhidao ni huilai  yihou bing le

I know you come back after sick  Perf. I  know you come back after sick  Perf.

NN VV PN VV LC \'AY% AS NN VV PN \'AY% LC \'AY% AS
(a) Human-preferred analysis (b) Alternative analysis

Figure 4. PP-attachment ambiguity parsing preferencesinese.
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Susan verzierte den  Kuchen mlt dem  Obst Susan verzierte den Kuc en mlt dem Obst
Susan decorated  the cake with the fruit Susan decorated the cake with the fruit
VVFIN  ART NN APPR ART NN VVFIN ART APPR ART NN

(@) Human-preferred analysis (b) Alternative anaIyS|s

Figure 5: PP-attachment ambiguity parsing preferencesima@n.

Chinese English
Feature TopLeft TopRight TopLeft TopRight
Human-preferred 0.54 0.09 0.12 0.34
Alternative 0.0004 041 0.27 0.20

Table 4: TopLeft vs. TopRight Transition Probabilities.

c book; bought o huilai; zhidao

T for; Susan T yihou; bing; le
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TopLeft=0.12 TopLeft =0.27 TopLeft = 0.0004 TopLeft = 0.54
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(a) English (b) Chinese

Figure 6. State space diagrams of the ambiguous regionséoreievant transitions. While TopRight
chooses the human-preferred (HP) transition for EnglisipL&ft chooses the HP transition for Chinese.

it takes into account more information, we actuter at modeling garden path data cross-linguistically
ally find that the Stackl feature often performs bet(Boston et al., 2008a). The fact that Chinese prefers



Chinese German

Feature Stackl Stack?2 Stackl Stack2
Human-preferred 0.20 0.53 0.43 0.37
Alternative 0.40 0.21 0.48 0.49

Table 5: Stackl vs. Stack2 Transition Probabilities.

Stack2 may be an artifact of a typological differ-weight of Position.

ence between the two languages. Chinese is an an-The feature ranking once again leads to the
alytic language which relies more on the use of paggrrect parsing of the PP-attachment ambiguities
ticles (i.e., separate function words) than inflectiofyr the two sentences. Distance, which has a
to provide meaning (Comrie, 1989). Therefore, th@igh, positive weight for English, predicts the high-
parser would require more stack information to deattachment preference, whereas Position predicts
rive meaning than it would for a synthetic languaggne |ow-attachment preference (Table 6). On the
like German. other hand, Position chooses the human-preferred
The difference in weights for these features prehigh-attachment for German, but Distance does
dicts the PP-Attachment preferences for both lamot. These results indicate that the feature selec-
guages as well. German, like English, prefers highion method is able to distinguish the differences be-
attachment for prepositions, where they modify théveen configurational and non-configurational lan-
verb rather than the noun (Figure 5(a)) (Agricolaguages, and counsels the parser to choose the
1968). The alternative reading in Figure 5(b), whilehuman-preferred attachment in each language.
available, would only arise for particular lexical
items. Stackl, which is given a positive weight for .
German, is able to predict the human-preferred ana@- Conclusion
ysis because the human-preferred transition’s proba-
bility is higher in Table 5. Stack2, however, predict{Our results demonstrate that a wrapper feature se-
the alternative analysis. In Chinese, the opposite |§ction method implemented with an SVM learner
the case: Stack2 predicts the human-preferred redd-able to distinguish three main typological char-
ing, whereas Stackl does not. These results demgtfteristics of the languages tested: head position
strate that the feature selection method is sensiti@ English and Chinese, morphological constituents

to the typological differences between isolating an#? Chinese and German, and configurational pref-
synthetic languages. erences in German and English. The language-

specific weights for the features additionally coun-
sel the parser to choose the human-preferred tran-
sition for the PP-Attachment ambiguity despite at-
English is a configurational language, where theachment preference differences. This indicates that
word order is highly constrained within a sentencgeature selection can reveal how typological condi-
(Ross, 1967). German, on the other hand, does n@ns interact with human parsing preferences in a
constrain many sentential structures to set positiorgntence processing model, and further supports the

(Uszkoreit, 1987). This typological difference is re-yse of probabilistic parsers for sentence processing
flected by the feature selection ranking in Table 3. Ipesearch (Jurafsky, 1996).

a configurational language, the position a word has

in a sentence would be an important characteristic

which is reflected by the high weight and rank of the/ Acknowledgements

Position feature for English. In a language like Ger-

man, however, Position would be less informativel his work was partially supported by NSF IGERT
than the relative distance between two words, whicrant DGE-0114378.

is reflected by the high weight of Distance but low

5.3 Distancein German vs. Position in English



English German

Feature Distance Position Distance Position
Human-preferred 0.01 0.32 0.29 0.24
Alternative 0.24 0.07 0.24 0.32

Table 6: Distance vs. Position Transition Probabilities.
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