
Dependency Structures
Derived from Minimalist Grammars

Marisa Ferrara Boston1, John T. Hale1, and Marco Kuhlmann2

1 Cornell University
2 Uppsala University

Abstract. This paper provides an interpretation of Minimalist Gram-
mars [16,17] in terms of dependency structures. Under this interpretation,
merge operations derive projective dependency structures, and movement
operations introduce both non-projectivity and illnestedness. This new
characterization of the generative capacity of Minimalist Grammar makes
it possible to discuss the linguistic relevance of non-projectivity and illnest-
edness. This in turn provides insight into grammars that derive structures
with these properties.1

1 Introduction

This paper investigates the class of dependency structures that Minimalist Gram-
mars (MGs) [16,17] derive. MGs stem from the generative linguistic tradition,
and Chomsky’s Minimalist Program [1] in particular. The MG formalism encour-
ages a lexicalist analysis in which hierarchical syntactic structure is built when
licensed by word properties called “features”. MGs facilitate a movement anal-
ysis of long-distance dependency that is conditioned by lexical features as well.
Unlike unification grammars, but similar to categorial grammar, these features
must be cancelled in a particular order specific to each lexical item.

Dependency Grammar [18] is a syntactic tradition that determines sentence
structure on the basis of word-to-word connections, or dependencies. DG names
a family of approaches to syntactic analysis that all share a commitment to
word-to-word connections. [8] relates properties of dependency graphs, such as
projectivity and wellnestedness, to language-theoretic concerns like generative
capacity.

This paper examines these same properties in MG languages. We do so using
a new DG interpretation of MG derivations. This tool reveals that syntactic
movement as formalized in MGs can derive the sorts of illnested structures at-
tested in Czech comparatives from the Prague Dependency Treebank 2.0 (PDT)
[5]. Previous research in the field indirectly link MGs and DGs: [12] proves the
equivalence of MGs with Linear Context-Free Rewriting Systems (LCFRS) [19],
and the relation of LCFRS to DGs is made explicit in [8]. This paper provides a

1 The authors thank Joan Chen-Main, Aravind K. Joshi, and audience members at
Mathematics of Language 11 for discussion and suggestions.

C. Ebert, G. Jäger, and J. Michaelis (Eds.): MOL 10/11, LNCS 6149, pp. 1–12, 2010.
© Springer-Verlag Berlin Heidelberg 2010

2 M.F. Boston, J.T. Hale, and M. Kuhlmann

direct connection between the two formalisms. Using this connection, we inves-
tigate the linguistic relevance of structural constraints such as non-projectivity
and illnestedness based on MGs that induce structures with these properties.
The system proposed is not a new formalism, but a technical tool that we use
to gain linguistic insight.

Section 2 describes MGs as they are formalized in [17], and Section 3 trans-
lates MG operations into operations on dependency structures. Sections 4 and 5
discuss the structural constraints of projectivity and nestedness in terms of MGs.

2 Minimalist Grammars

This section introduces notation particular to the MG formalism. Following [16]
and [17], a Minimalist Grammar G is a five-tuple (Σ, F,Types ,Lex ,F). Σ is
the vocabulary of the grammar, which can include empty elements. Figure 6
exemplifies the use of empty “functional” elements typical in Chomskyan and
Kaynian analyses. There ε denotes an empty element that, while syntactically
potent, makes no contribution to the derived string. F is a set of features, built
over a non-empty set of base features, which denote the lexical category of the
item. If f is a base feature, then =f is a selection feature, which selects for
complements with base feature f ; a prefixed + or − identifies licensor and
licensee features, +f and −f respectively, that license movement. A Minimalist
Grammar distinguishes two types of structure. The “simple” type, flagged by
double colons (::), identifies items fresh out of the lexicon. Any involvement in
structure-building creates a “derived” item (:) flagged with a single colon. This
distinction allows the first derivation of syntactic composition to be handled
differently from later episodes. A chain is a triple Σ∗ × Types × F ∗, and an
expression is a non-empty sequence of chains. The set of all expressions is denoted
by E. The lexicon Lex is a finite subset of chains with type ::. The set F is a set
of two generating functions, merge and move. For simplicity, we focus on MGs
that do not incorporate head or covert movement. Table 1 presents the functions
in inference-rule form, following [17]. In the table, the juxtaposition st denotes
the concatenation of two strings s and t.

Merge is a structure building operation that creates a new, derived expression
from two expressions (E×E → E). It is the union of three functions, shown in the
upper half of Table 1. Each sub-function applies according to the type and feature
of the lexical items to be merged. The three merge operations differ with respect
to the types of chains they operate on. If s is simple (::), the merge1 operation
applies. If it is derived (:), the merge2 operation applies. We write · when the type
does not matter. If t has additional features δ, the merge3 operation must apply
regardless of the type of s. The move operation is a structure building operation
that creates a new expression from an expression (E → E). It is the union of
two functions, move1 and move2, provided in the lower half of Table 1. As with
the merge3 operation, move2 only applies when t has additional features δ.

Dependency Structures Derived from Minimalist Grammars 3

Table 1. Merge and Move

s :: =fγ t · f, α1 , . . . αk

st : γ, α1 , . . . , αk

merge1

s : =fγ, α1 , . . . , αk t · f, ι1 , . . . , ιl

ts : γ, α1 , . . . , αk , ι1 , . . . , ιl
merge2

s · =fγ, α1 , . . . , αk t · fδ, ι1 , . . . , ιl

s : γ, α1 , . . . , αk , t : δ, ι1 , . . . , ιl
merge3

s : +fγ, α1 , . . . , αi−1 , t : −f, αi+1 , . . . , αk

ts : γ, α1 , . . . , αi−1 , αi+1 , . . . , αk

move1

s · +fγ, α1 , . . . , αi−1 , t : −fδ, αi+1 , . . . , αk

s : γ, α1 , . . . , αi−1 , t : δ, αi+1 , . . . , αk

move2

3 MG Operations on Dependency Trees

In this section we introduce a formalism to derive dependency structures from
MGs. Throughout the discussion N denotes the set of non-negative integers.

3.1 Dependency Trees

DG is typically discussed in terms of directed dependency graphs. However, the
directed nature of dependency arrows and the single-headed condition [13] allow
these graphs to also be viewed as trees. We define dependency trees in terms
of their nodes, with each node in a dependency tree labeled by an address, a
sequence of positive integers. We write λ for the empty sequence of integers.
Letters u, v, w are variables for addresses, s,t are variables for sets of addresses,
and x, y are variables for sequences of addresses. If u and v are addresses, then
the concatenation of the two is as well, denoted by uv. Given an address u and
a set of addresses s, we write ↑u s for the set { uv | v ∈ s }. Given an address u
and a sequence of addresses x = v1 , . . . , vn , we write ↑u x for the sequence
uv1 , . . . , uvn . Note that ↑u s is a set of addresses, whereas ↑u x is a sequence of
addresses.

A tree domain is a set t of addresses such that, for each address u and each
integer i ∈ N, if ui ∈ t, then u ∈ t (prefix-closed), and uj ∈ t for all 1 ≤ j ≤ i
(left-sibling closed). A linearization of a finite set S is a sequence of elements
of S in which each element occurs exactly once. For the purposes of this paper, a
dependency tree is a pair (t, x), where t is a tree domain, and x is a linearization
of t. A segmented dependency tree is a non-empty sequence (s1 , x1), . . . , (sn , xn),
where each si is a set of addresses, each xi is a linearization of si , all sets si are
pairwise disjoint, and the union of the sets si forms a tree domain. A pair (si , xi)
is called a component, which corresponds to chains in Stabler and Keenan’s [17]
terminology.

4 M.F. Boston, J.T. Hale, and M. Kuhlmann

An expression is a sequence of triples (c1 , τ1 , γ1), . . . , (cn , τn , γn), where
(c1 , . . . , cn) is a segmented dependency tree, each τ i is a type (lexical or de-
rived), and each γi is a sequence of features. We write these triples as ci :: γi

(if the type is lexical), ci : γi (if the type is derived), or ci · γi (if the type does
not matter). We use the letters α and ι as variables for elements of an expres-
sion. Given an element α = ((s, x), τ, γ) and an address u, we write ↑u α for the
element ((↑u s, ↑u x), τ, γ).

Given an expression d with associated tree domain t, we write next(d) for the
minimal positive integer i such that i /∈ t.

3.2 Merge

Merge operations allow additional dependency structure to be added to an ini-
tially derived tree. These changes are recorded in the manipulation of the de-
pendency tree addresses, as formalized in the previous section. Table 2 provides
a dependency interpretation for each of the structure-building rules introduced
in Table 1. The mergeDG functions create a dependency between two trees, such
that the root of the left tree becomes the head of the root of the right tree, where
left and right correspond to the trees in the rules. For example, in merge1DG

the ↑1 t notation signifies that t is now the first daughter of s. Its components
are similarly updated.

Table 2. Merge in terms of dependency trees

({λ}, 〈λ〉) :: =fγ (t, x) · f, α1 , . . . , αk

({λ} ∪ ↑1 t, 〈λ〉 · ↑1 x) : γ, ↑1 α1 , . . . , ↑1 αk

merge1DG

(s, x) : =fγ, α1 , . . . , αk (t, y) · f, ι1 , . . . , ιl

(s ∪ ↑i t, ↑i y · x) : γ, α1 , . . . , αk , ↑i ι1 , . . . , ↑i ιl
merge2DG

(s, x) · =fγ, α1 , . . . , αk (t, y) · fδ, ι1 , . . . , ιl

(s, x) : γ, α1 , . . . , αk , (↑i t, ↑i y) : δ, ↑i ι1 , . . . , ↑i ιl
merge3DG

where i = next((s, x) · =fγ, α1 , . . . , αk)

Applying the merge1DG rule to a simple English grammar creates the de-
pendency tree in Figure (1). Dependency relations between nodes are notated
with solid arrows and node labels are notated with dotted lines; the dependency
graphs shown in the figures are encoded by the address sets described above in
Table 2. A lexicon for these examples is provided in Figure 1(a).

As was mentioned above, the merge rules apply in different contexts depending
on the tree types and number of features. Merge1DG can apply in Figure 1
because the selector tree the is simple and the selected tree boat does not have
additional features δ. The entire derived tree forms a single component, denoted
by the dashed box. Merge2 contrasts with merge1 in the linearized order of the
nodes: in this case, the right tree is ordered before the left tree and its children,
as in Figure 2(a).

Dependency Structures Derived from Minimalist Grammars 5

the::=n d boat::n docked::=d=d v where::d -wh ε::=v +wh c
(a) Lexicon 1.

the::=n d
(b)

boat::=n
(c)

the:d boat
(d)

Fig. 1. merge1DG applies to two simple dependency trees

The rules given in Table 2 are a deduction system for expressions : sequences
of triples whose first components together define a segmented dependency tree.
Each component, spanning any number of words, has a feature-sequence as-
sociated with it. Merge3DG introduces new, unlinearized components into the
derivation. These components are unordered with respect to the other compo-
nents, though the words within the components are ordered. In Figure 2(b),
docked and where are represented by separate dashed boxes; this indicates that
their relative linear order is unknown. Merge3DG contrasts with applications of
merge1DG merge2DG, where two dependency trees are merged into one, fully-
ordered component, demonstrated by Figures 1(d) and 2(a).

3.3 Move

The move operation does not create or destroy dependencies in the derived tree.
It re-orders the nodes, and reduces the number of components in the tree by
one. Table 3 defines these rules in terms of dependency trees.

Table 3. Move in terms of dependency trees

(s, x) : +fγ, α1 , . . . , αi−1 , (t, y) : −f, αi+1 , . . . , αk

(s ∪ t, yx) : γ, α1 , . . . , αi−1 , αi+1 , . . . , αk

move1DG

s · +fγ, α1 , . . . , αi−1 , t : −fδ, αi+1 , . . . , αk

s : γ, α1 , . . . , αi−1 , t : δ, αi+1 , . . . , αk

move2DG

Figure 3 demonstrates the move1DG operation on a simple structure. The
where node is not only reordered to the front of the tree, but it also becomes
part of the ε node’s component. Note that for this example we use an ε to denote
the structural position that has the +wh feature. This follows from standard
linguistic practice; in some languages, this position can be marked by an overt
lexical item. In English, it is not. Both ε and overt lexical items can have licensor
features.

Unlike the previous merge and move operations described, move2DG does not
change the dependency structure or linearization of the tree. Move2DG applies
when the licensee component has additional features that require further move-
ments. Its sole purpose is to cancel the licensor and licensee features; this feature

6 M.F. Boston, J.T. Hale, and M. Kuhlmann

the boat sailed: v
(a)

docked:=d v where:-wh
(b)

Fig. 2. merge2DG and merge3DG

ε:+wh c the boat docked where: -wh

where ε:c the boat docked

Fig. 3. move1DG

cancellation is necessary to preserve the linguistic intuition of the intermediate
derivation step. Figure 4 demonstrates Move2DG. Although the +wh and −wh
features are canceled, the linear order is unaffected and the additional licensee
feature −t on where remains.

Following [16] and [17], we restrict movement with the Shortest Move Condi-
tion (SMC), defined in (1).

(1) None of α1 , ..., αi−1 , αi+1 , ..., αk has −f as its first feature.

Adoption of the SMC guarantees a version of MGs that are weakly equivalent
to LCFRS [2].

The rules above derive connected dependency structures. This is demonstrated
by induction on the derived structure: Single-node trees (i.e., simple lexical
items) vacuously satisfy connectedness. All merge rules create dependencies be-
tween trees, and movements do not destroy any already-created dependencies.
Therefore, a dependency structure at any derivation step will be connected.

Provided that every expression in the lexicon has exactly one base feature, the
dependency trees derived from MGs will not contain multi-headed nodes (i.e.,
nodes with multiple parents). This single-headedness proof follows straightfor-
wardly from two lemmas concerning the role of base features in expressions
E = (c1 , τ1 , γ1), . . . , (cn , τn , γn). Lemma 1 asserts the unique existence of a
base feature f in the first feature sequence γ1 . Lemma 2 denies the existence of
base features in later components.

Dependency Structures Derived from Minimalist Grammars 7

ε:+wh c the boat docked where: -wh -t

ε: c the boat docked where: -t

Fig. 4. move2DG

The dependency structures derived at intermediate steps need not be totally
ordered. Because of the merge3 and move2 rules, components can be introduced
into the dependency structure that have not yet moved to their final order in
the structure. However, the usual notion of start category [17] in MGs is a single
base feature. This implies that in complete derivations all licensee feature have
been checked. The implication guarantees that dependency trees derived using
the system in Tables 2 and 3 are totally-ordered.

4 Minimalist Grammars and Block Degree

Projectivity is a constraint on dependency structures that requires subtrees to
span intervals. [9] define an interval as the set [i, j] := {k ∈ V |i ≤ k and k ≤ j},
where i and j are endpoints, and V is a set of nodes as defined in Section 3.1.
Non-projective structures violate this constraint. The node labeled docked in
Figure 3 spans two intervals: its child spans interval 0 and the node and its
other children span intervals 2-4.

Following [8] we use the notion of block degrees to characterize non-projective
structures. A tree’s block degree is the maximum number of intervals each of its
subtrees span. The block degree for Figure 3, repeated in Figure 5, is two: each
of the intervals of the node labeled docked forms a block. Shaded boxes notate
node blocks.

where: ε:c the boat docked

Fig. 5. The block degree of this structure is 2

8 M.F. Boston, J.T. Hale, and M. Kuhlmann

By construction, mergeDG always forms dependency relations between the
roots of subtrees. All nodes in the resulting expression are part of the same
interval. Move1DG has the potential to create non-projective structures: con-
stituents can move away from the interval that the parent node spans to create
a separate constituent block, as demonstrated by Figure 5. In this example, the
ε element intervenes between docked to where dependency. As discussed above,
in other languages ε could be replaced by an overt lexical item. Both types of
intervention are considered non-projective in this work.

Because only movements can cause non-projectivity, and because all move-
ments are triggered in the MG framework by a licensor and licensee pair, the
block degree of the derived tree is bounded by the number of licensees. In other
words, the number of licensees determines the maximum block degree of the
structure. This number has previously been identified as an upper bound on
the complexity of MGs [11,6]. The coincidence of this result follows from work
by [14], who attributed the increased parsing complexity of LCFRS to non-
projectivity [8].

5 Minimalist Grammars and Nestedness

A further constraint on the class of dependency structures is wellnestedness [8].
Wellnestedstructuresprohibit the “crossing” ofdisjointsubtree intervals.Anystruc-
ture that is not wellnested is said to be illnested, as in Figure 6(b). Here, the sub-
tree spanning the hearing on the issue crosses the subtree spanning scheduled
today. [8] demonstrates that grammars that derive illnested structures are more
powerful than grammars that do not, which leads to higher parsing complexity.

the::=n =p d -y hearing::n on::=d p -w the::=n d issue::n
is:: =v =d t -x scheduled::=r v today::r -w ε::=t +w c ε::=c +x c
ε::=c +y c ε::=c +z c

(a)

the hearing ε is scheduled ε on the issue ε today ε

(b)

Fig. 6. MGs derive illnested dependency structures

Dependency Structures Derived from Minimalist Grammars 9

the: -z hearing on: -x the issue is: t -y scheduled today: -w
(a) Merged structure before movement.

today ε:c the: -z hearing on: -x the issue is: -y scheduled
(b) Merge of ε::=v +w c and is: -y. Movement of today: -w.

on the issue ε:c today ε the: -z hearing is: -y scheduled
(c) Merge of ε::=c +x c and ε: c. Movement of on: -x.

is scheduled ε:c on the issue ε today ε the: -z hearing
(d) Merge of ε::=c +y c and ε: c. Movement of is: -y.

the hearing ε:c is scheduled ε on the issue ε today ε

(e) Merge of ε::=c +z c and ε: c. Movement of the: -z.

Fig. 7. Derivation of illnested English structure

10 M.F. Boston, J.T. Hale, and M. Kuhlmann

We prove that MGs are able to derive illnested structures by example. The
grammar in Figure 6(a) derives the illnested English structure in Figure 6(b).
The result is a 1-illnested structure, the lowest level of illnestedness in the charac-
terization of [10]. Not all mildly context-sensitive formalisms can derive illnested
structures. For example, TAGs can only generate wellnested structures with a
block-degree of at most two [8]. Our proof demonstrates that MGs derive struc-
tures with higher block degrees, which have a potential for illnested structures.
This allows MGs to generate the same string languages as LCFRS, which also
generate illnested structures [15].

The illnested structure in Figure 6(b) is also interesting from a linguistic
perspective. It represents a case of noun-complement clause extraposition [4],
where the complement on the issue is extraposed from the determiner phrase
the hearing. The additional extraposition of the adverb today from the verb
phrase is scheduled leads to the illnested final structure. Several analyses of
extraposition are put forth in the literature, but here we choose Kayne’s [7]
“stranding analysis”, where a series of leftward movements leads to modifier
stranding. These movements are each motivated by empty functional categories
that could be overt in other possible human languages. In this lexicon, first
the adverb is moved by the licensor +w (Figure 7(a)), followed by the preposi-
tional phrase, the verb phrase, and finally the noun phrase, as in Figures 7(b)
through 7(e).

The analysis of the illnested structure in Figure 6(b) in terms of extraposition
provides a first step towards an understanding of the linguistic relevance of
illnested structures. This is not only useful for the analysis of dependencies in
formal grammars, but also the analysis of extraposition in linguistics.

Investigating the linguistic qualities of illnested structures cross-linguistically
also shows promise. For example, treebanks from languages with freer word or-
der, such as Czech, tend to have more illnested structures [8]. The sentence in
Figure 8 is sentence number Ln94209_45.a/18 from the PDT 2.02. An English
gloss of the sentence is “A strong individual will obviously withstand a high risk
better than a weak individual”.3 This particular example is a comparative con-
struction (better X than Y) [3], which can give rise to illnestedness in Czech.
The MG acknowledges syntactic relationships between the comparative construc-
tion and the adjectives weak and strong. The specific analysis stays close to the
Kaynian tradition in supposing empty categories that intertwine with the depen-
dencies from two different subtrees. Other constructions that cause illnestedness
in the PDT are subject complements, verb-nominal predicates, and coordination
(Kateřina Veselá, p.c.). At least in the case of Czech, this evidence suggests that
the expressive power of a syntactic movement rule (rather than just attachment)
is required.

2 Punctuation is removed to simplify the diagram.
3 The authors thank Jiří Havelka (IBM Czech Republic), Kateřina Veselá (Charles

University), and E. Wayles Browne (Cornell University) for the translation and lin-
guistic analysis of the illnested structures in the PDT.

Dependency Structures Derived from Minimalist Grammars 11

Vysokému::Atr riziku::=Atr Obj -f
se::AuxT samozřejmě::AuxY
lépe::=AuxC Adv než::=ExD AuxC -b
slabý::ExD silný::Atr -d
jedinec::=Atr Sb -a ubrání::=Obj =Adv =AuxY =AuxT =Sb Pred -e
ε::=Pred +a c ε::=c +b c
ε::=c +d c ε::=c +e c
ε::=c +f c

(a)

Vysokému riziku ε:c se samozřejmě lépe ubrání ε silný ε než slabý ε jedinec ε

high risk ε:c self obviously betterwill-defend ε strong ε than weak ε individual ε

(b)

Fig. 8. An illnested Czech example from the Prague Dependency Treebank

6 Conclusion

This paper provides a definition of MG merge and move operations in terms of
dependency trees, and examines the properties of these operations in terms of
both projectivity and nestedness constraints. We find that MGs with movement
rules derive illnested structure of exactly the sort required by Czech comparatives
and English noun-complement clause extractions.

The work also provides a basis for future research in determining how differ-
ent types of MG movement, such as head, covert, and remnant movement, interact
with dependency constraints and properties like illnestedness. Dependency-
generative capacity may also provide a new avenue of research into determining
how different types of locality constraints (besides the SMC) interact with gener-
ative capacity [2].

References

1. Chomsky, N.: The Minimalist Program. MIT Press, Boston (1995)
2. Gärtner, H.M., Michaelis, J.: Some remarks on locality conditions and Minimal-

ist Grammars. In: Sauerland, U., Gärtner, H.M. (eds.) Interfaces + Recursion =
Language?, pp. 161–195. Mouton de Gruyter, Berlin (2007)

3. Goldberg, A.: Constructions at Work: The Nature of Generalization in Language.
Oxford University Press, New York (2006)

12 M.F. Boston, J.T. Hale, and M. Kuhlmann

4. Guéron, J., May, R.: Extraposition and logical form. Linguistic Inquiry 15, 1–32
(1984)

5. Hajič, J., Panevová, J., Hajičová, E., Sgall, P., Pajas, P., Štěpánek, J., Havelka, J.,
Mikulová, M.: Prague dependency treebank 2.0 (2000)

6. Harkema, H.: A characterization of minimalist languages. In: de Groote, P., Mor-
rill, G., Retoré, C. (eds.) LACL 2001. LNCS (LNAI), vol. 2099, p. 193. Springer,
Heidelberg (2001)

7. Kayne, R.S.: The Antisymmetry of Syntax. MIT Press, Cambridge (1994)
8. Kuhlmann, M.: Dependency structures and lexicalized grammars. Ph.D. thesis,

Universität des Saarlandes (2007)
9. Kuhlmann, M., Nivre, J.: Mildly non-projective dependency structures. In: Pro-

ceedings of the COLING/ACL 2006, pp. 507–514 (2006)
10. Maier, W., Lichte, T.: Characterizing discontinuity in constituent treebanks.

In: Proceedings of the Fourteenth Conference on Formal Grammar (2009)
http://webloria.loria.fr/~degroote/FG09/Maier.pdf

11. Michaelis, J.: Derivational minimalism is mildly context-sensitive. In: Moortgat,
M. (ed.) LACL 1998. LNCS (LNAI), vol. 2014, p. 179. Springer, Heidelberg (2001)

12. Michaelis, J.: On formal properties of Minimalist Grammars. Linguistics in Pots-
dam (LiP) 13, Universitätsbibliothek Publikationsstelle, Potsdam (2001)

13. Nivre, J.: Inductive Dependency Parsing. In: Text, Speech and Language Technol-
ogy, Springer, New York (2006)

14. Satta, G.: Recognition of linear context-free rewriting systems. In: Proceedings of
the Association for Computational Linguists (ACL), pp. 89–95 (1992)

15. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2), 191–229 (1991)

16. Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) LACL 1996. LNCS
(LNAI), vol. 1328, pp. 68–95. Springer, Heidelberg (1997)

17. Stabler, E.P., Keenan, E.: Structural similarity within and among languages. The-
oretical Computer Science 293(2), 345–363 (2003)

18. Tesnière, L.: Éléments de syntaxe structurale. Editions Klincksiek (1959)
19. Vijay-shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions

produced by various grammatical formalisms. In: Proceedings of the Association
for Computational Linguists (ACL), pp. 104–111 (1987)

http://webloria.loria.fr/~degroote/FG09/Maier.pdf

	Dependency StructuresDerived from Minimalist Grammars
	Introduction
	Minimalist Grammars
	MG Operations on Dependency Trees
	Dependency Trees
	Merge
	Move

	Minimalist Grammars and Block Degree
	Minimalist Grammars and Nestedness
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

