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Abstract
Eye fixation durations during normal reading correlate with processing dif-
ficulty but the specific cognitive mechanisms reflected in these measures are
not well understood. This study finds support in German readers’ eye fixa-
tions for two distinct difficulty metrics: surprisal, which reflects the change
in probabilities across syntactic analyses as new words are integrated, and
retrieval, which quantifies comprehension difficulty in terms of working mem-
ory constraints. We examine the predictions of both metrics using a family
of dependency parsers indexed by an upper limit on the number of candi-
date syntactic analyses they retain at successive words. Surprisal models all
fixation measures and regression probability. By contrast, retrieval does not
model any measure in serial processing. As more candidate analyses are con-
sidered in parallel at each word, retrieval can account for the same measures
as surprisal. This pattern suggests an important role for ranked parallelism
in theories of sentence comprehension.
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Introduction

What cognitive mechanisms are reflected in sentence comprehension difficulty? This
has been a central question in psycholinguistic research, and the literature acknowledges two
broad categories of answer. One kind of answer is predicated on resource limitations in the
human sentence processing mechanism (Miller & Chomsky, 1963; Clifton & Frazier, 1989;
Gibson, 1991; Lewis & Vasishth, 2005). The other kind of answer appeals to misplaced
expectations or predictions as an analysis is built (Elman, 1990; Mitchell, 1995; Jurafsky,
1996; Hale, 2001). Some recent work suggests that these two different kinds of answer
may in fact explain distinct aspects of human sentence processing (Demberg & Keller,
2008; Levy, 2008). If correct, any such two-factor explanation immediately leads to the
question: what are the relative contributions of the two factors, and how do they interact
with common resources like memory? In this paper, we furnish an answer to this question.

Standardizing on one probabilistic parsing method, we work out the predictions of
both surprisal (Hale, 2001) and cue-based retrieval (Lewis & Vasishth, 2005). We use
both metrics to quantify comprehension difficulty across a family of psycholinguistic mod-
els that differ only in the number of syntactic analyses they explore in parallel (Lewis,
2000; Gibson & Pearlmutter, 2000). These theoretical predictions are evaluated at a range
of parallel processing levels against fixation durations collected in a German eyetracking
dataset, the Potsdam Sentence Corpus (PSC) (Kliegl, Grabner, Rolfs, & Engbert, 2004).
This corpus consists of 144 sentences1 with fixation duration data from 222 readers.

The surprisal predictions that we derive account for eye fixation measures at all levels
of parallel processing. The retrieval predictions that we derive account for all measures as
well, but only in models that simultaneously consider multiple syntactic analyses. These
contrasting outcomes illustrate how the assumed level of parallel processing can interact
with different complexity metrics. While we do not claim that this demonstration identifies
the specific level of parallelism in the human sentence processing mechanism, it does argue
against the view that parallelism should be thought of as orthogonal to other assumptions
in psycholinguistic theory. In sentence comprehension models that derive eye-movement
data, parallel processing alone can make the difference between empirical adequacy and
empirical inadequacy.

Before describing the parsing model itself, we first discuss the overall methodology in
the context of prior work. Subsequent sections sketch out our particular implementation of
the surprisal and retrieval difficulty metrics within one shared parsing mechanism. A fuller,
more technical presentation is provided in Appendix A. The main text goes on evaluate
these metrics’ predictions using the Potsdam Sentence Corpus. The paper concludes with
remarks on the implications of our findings.

Methodology & Background

This work poses the following research question: how helpful are notions of syntac-
tic surprise and memory retrieval latency in accounting for German readers’ eye fixations?
To address it, we pursue a corpus study methodology. While the corpus remains constant,
we examine several different explanations for the observations collected in it. This set of
candidate explanation reflects not only the controversy about surprisal and retrieval, but
also the controversy over serial versus parallel parsing. We construct a series of comprehen-
sion models that take different theoretical positions on both of these issues. For instance,
one of these parsers can handle up to fifteen simultanous analyses, and derives processing
difficulty predictions using cue-based retrieval. Another model has just 1 rank — it is serial

1The PSC sentences exhibit a range of syntactic phenomena reflecting everyday language rather than
tricky cases such as garden path sentences.



Amount
of

Parallel
Processing

German parser
with surprisal with retrieval with surprisal

and retrieval
serial (1) ? ? ?
ranked parallel (5) ? ? ?
ranked parallel (10) ? ? ?
ranked parallel (15) ? ? ?
ranked parallel (20) ? ? ?
ranked parallel (25) ? ? ?
ranked parallel (100) ? ? ?

Table 1: The methodology adopted in the present research: holding the parser and empirical dataset
constant, we systematically vary either the complexity metric (horizontal dimension) or the degree
of parallelism (vertical dimension). The numbers in parentheses mark the degree of parallelism.
We compute the relative quality of fit for each model against the empirical dataset to determine
how well the model accounts for eye fixation measures while reading.

— and makes difficulty predictions via surprisal. We compute the disparity between each
theory’s consequences and the PSC eye movement data. Table 1 lays this methodology out
graphically. This table highlights the research objective: to compare theories that use the
same parser but vary either the complexity metric (horizontal dimension) or the degree of
parallelism (vertical dimension).

The question-marks are quantities that we calculate in the course of this study.
They quantify the degree-of-fit for multiple linear regression models that include several
other factors known to influence eye-movements. The degree-of-fit indexes how well such
a model accounts for the same collection of observed eye-movement measures (e.g. single-
fixation durations) when paired with specific predictor variables (e.g. theorized surprisal)
at a given level of parallelism in parsing. These surprisal and retrieval predictions are
defined in sufficient computational detail that the origins of any differences are clear. Our
agenda is to juxtapose a broad range of PSC eye-movement measures against each cell’s
corresponding theory in an effort to discern which predictors are truly consequential in an
explanation of German reading difficulty that involves syntactic parsing.

Unlike studies that consider just one parsing mechanism or just one complexity met-
ric, the methodology we apply in this paper offers the chance to uncover relationships
between controversial alternative accounts of the same data. It has the potential to find
asymmetries that would not come out in a meta-analysis of surprisal or retrieval studies
that themselves employ incomparable parsing mechanisms. This methodology also has the
potential to find interactions between variants of the same comprehension theory. In this
work, we vary the amount of memory available for parallel processing.2 Because of the
centrality of this background concept, the next two subsections review parallel processing
and some of its implications for comprehension models. Remaining subsections take up
the grammar and the parsing strategy, respectively.

2The amount of parallel processing available in each of the candidate theories reflects human memory
in a limited and idealized way. Systems that can keep track of more alternative syntactic analyses have
more “memory” in this idealized sense than systems constrained to fewer, but nothing else can be said. In
this idealization, syntactic alternatives are not affected by similarity to each other, or by experience gained
during prior discourse. This lack of detail should not be misconstrued as a rejection of established findings
regarding human memory. On the contrary, we look forward to more realistic models that cast off these
simplifications.



The idea of parallel processing in human sentence comprehension

In this study, we examine the relative adequacy of alternative theories of human
sentence processing that each assume different levels of parallel processing. But what do
we mean by parallel processing? The basic idea — that people can, on some level, do more
than one cognitive operation at a time while understanding sentences — is an old one.
Fodor, Bever, and Garrett (1974) lay out two poles of opposition.

There are, patently, two broad theoretical options. On the one hand, one
might imagine that the perceptual system is a parallel processor in the sense
that given a portion of a sentence which has n possible linguistic structures,
each of the n structures is computed and “carried” in short-term storage. If a
disambiguating item is encountered, all but one of the n analyses are rejected,
with the residual analysis being the one which is stored. If no disambiguat-
ing material is encountered, all n analyses are retained, and the sentence is
represented as ambiguous in n ways.

Alternatively, one might suppose that the system is a serial processor in the
sense that given a portion of a sentence which has n possible linguistic struc-
tures, only one of the n structures is computed. This structure is accepted
as the correct analysis unless disambiguating material incompatible with it is
encountered. If such material is encountered, then the processor must go back
to the ambiguous material and compute a different analysis.

There are obviously a variety of modifications and blends of these two pro-
posals that one might consider.
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At the time that Fodor and colleagues were writing, parallel processing was under study.
Lackner and Garrett (1973) found support for parallelism in a dichotic listening task, and
Cowper’s (1976) model availed itself of up to three “tracks” in accounting for performance
phenomena across several languages.

But it was the serial parsing idea that was prominently realized in computational
cognitive models during the 1970s. For instance, Kaplan (1972) used Augmented Tran-
sition Networks (ATNs) to deduce a variety of detailed predictions about relative clauses
which were upheld in experimental work by himself and others (Wanner & Maratsos, 1978).
The ATNs Kaplan considered are serial processors: they pursue one linguistic structure at
a time and backtrack when they reach an impasse. By the 1980s researchers like Kurtzman
(1984) and Gorrell (1989) began to reconsider parsing models with parallel processing as an
alternative to other serial-processing proposals like the Sausage Machine (Frazier & Fodor,
1978) and Parsifal (Marcus, 1980). Gibson (1991) developed the idea of “ranked parallel”
approaches. It became de rigueur during the 1990s to interpret new experimental re-
sults from the vantage point of ranked parallel as well as serial processing. Around this
same time, parallel processing also surfaced as an essential element in many connection-
ist models of language processing (McClelland & Kawamoto, 1986; McClelland, St. John,
& Taraban, 1989; MacDonald, Pearlmutter, & Seidenberg, 1994). This is natural, because
parallel processing is a fundamental assumption of the PDP school of connectionist mod-
eling (Rumelhart, McClelland, & PDP Research Group, 1986). Spivey and Tanenhaus
(1998), for instance, embrace parallel processing in a passage where they characterize the
processing models for which they intend to offer an explicit connectionist implementation.

Specific models differ in their details, but as a class they share two common
features: (a) multiple constraints are combined to compute alternative inter-



pretations in parallel and (b) the alternatives compete with one another during
processing.
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By the end of the 1990s, members of the scientific community could be divided according
to their stance on parallel processing. It was widely acknowledged as a fundamental issue
in the cognitive science of language. A variety of experimental studies grappled with it, but
none proved decisive. Lack of progress on this question was perhaps unsurprising, given
that the sentence comprehension theories widely known in psycholinguistics at the time
were not well-formalized.

The idea of parallelism in broad-coverage parsing

With the advent of statistical natural language processing (NLP) in the 1990s, an-
other way of addressing the serial/parallel question started to emerge. Following Juraf-
sky’s (1996, §2.1) declaration that “the underlying architecture of the human language
interpretation mechanism is parallel” researchers like Roark and Johnson (1999) began
to adapt probabilistic parser designs from natural language engineering to serve as cogni-
tive models of human comprehension. These designs typically used parallel processing for
efficiency. But T. Brants and Crocker (2000) found that, with the right ranking factors,
parallel processing was nearly unnecessary — the same level of parsing performance could
be maintained at a degree of parallelism so low as to be almost serial. Indeed, Lewis (1993)
demonstrated that a fundamentally serial cognitive architecture like SOAR (Rosenbloom,
Laird, & Newell, 1993) was in fact compatible with a large subset of the available com-
prehension data. The theoretical innovations of the 1990s allowed for a re-consideration of
the same parallelism question on a larger scale.

Broad-coverage approaches borrow from NLP the imperative to cover a wide range
of language structures. Researchers such as Crocker and Brants (2000) enjoined psy-
cholinguists to consider garden-variety language, not just garden-path sentences. This new
generation of sentence processing models abandoned hand-crafted grammars in favor of
parsing methods that could be relied upon to work with large corpora. Under these con-
ditions, Fodor, Bever and Garrett’s (1974) notion of syntactically “incompatible” material
becomes useless: because broad-coverage parsers must be robust, nothing can be ruled out
for certain. Instead, the relative ranking of their “n possible linguistic structures” takes
center stage.

Broad-coverage models of human sentence comprehension typically impose fine-
grained preferences on the analyses that they consider in parallel, preferences that go
beyond the pursue-vs-abandon distinction. It is standard to codify these preferences using
probability. Despite widespread availability of these techniques, the implications of paral-
lel processing for sentence comprehension theories have so far not been studied in a way
that is simultaneously empirical and computationally explicit. We strive to do exactly that
in this research, building on assumptions about grammar and parsing that are laid out in
the next two subsections.

Dependency grammar

Even older than the question “how many alternative readings does the parser main-
tain?” is the question “what is the right theory of sentence structure?” The profusion of
syntactic theories is a familiar problem for sentence-processing researchers. It often seems
that when a grammar-based hypothesis fails to find support in the results of a behavioral ex-
periment, its proponents quickly offer a modified version. These proponents suggest that



Figure 1. A dependency graph identifies heads and dependents in a sentence.

their new proposal is the same in spirit, yet compatible in detail with whatever results
cast doubt on the old theory. The really central claims of a particular syntactic theory, as
regards sentence comprehension, can be difficult to pin down.

To cope with this problem, in this research we step back and work with a simplified
formalism called dependency grammar that stands in for a consensus view of syntax. De-
pendency grammar as a distinct linguistic tradition traces its intellectual lineage back to
Tesnière (1959) and Hays (1964), and continues to develop in more recent work such as
Mel’čuk (1988) and Hudson (2007). Its foundational concept — that words depend on other
words — is adopted, explicitly or implicitly, in virtually every modern syntactic theory.
An example structural description in dependency grammar is given in Figure 1.

The arcs in Figure 1 emanate from words in the role of head to other words that
are said to be their dependents. The symbols underneath the words are part-of-speech
tags: NNP stands for proper noun, VBD for verb and ADV for adverb. Heads are said to
“govern” their dependents. In typical dependency grammars, a head may have multiple
dependents but not the other way around.

This kind of asymmetric, word-to-word relationship figures in many well-known
approaches to grammar. For instance, in Head-Driven Phrase Structure Grammar, a
word’s arg-st list constrains its possible dependents (Pollard & Sag, 1994). In Mini-
malist Grammars based on the notion of Bare Phrase Structure (Chomsky, 1995), words
bear selectional features that cause them to enter dependency relationships in the course
of a derivation. In Tree Adjoining Grammars, words figure in elementary trees whose
substitution nodes set up an asymmetric relationship with other words in other elemen-
tary trees (Kroch & Joshi, 1985; R. Frank, 2002).

Each of these approaches brings its own inventory of additional concepts and nota-
tion to the structural analysis of sentences. For instance, Figure 1 could be enriched by
noting that the Phoebe’s dependency on the word loves is a case of direct-objecthood,
whereas the dependency with more is a kind of modification. In the hope that our results
might speak to a common core of attachment decisions implicated by a wide variety of
syntactic theories, we avoid decorating our dependency arcs with additional labels in this
work. Such an enrichment would be a natural follow-up project, however, for those seeking
to tease apart the perceptual implications of different syntactic theories.

Incremental parsing

The results reported in this paper are set against one final swath of background,
one that has to do with the design space of incremental parsers. While a parser’s task
is to recover structural descriptions from sequences of words, an incremental parser is
additionally subject to the requirement that it work through its input words from left to
right, just as a human would. We have adopted, in this project, the straightforward view
of incremental parsing as a process of repeatedly adding3 to partial structural descriptions

3This monotonic view fits a large class of parsing algorithms, but excludes “repair” or reanalysis opera-
tions like snip or tree lowering that change sentence structures in ways other than adding to them (Lewis,
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Figure 2. Partial syntactic analyses occupy states in the problem space.

of sentence-initial fragments (Marcus, Hindle, & Fleck, 1983; Barton & Berwick, 1985;
Weinberg, 1993).

The essential point is that ambiguity sets up difficult decisions about what to add. We
view particular ways of extending a dependency graph as operators in the sense of Newell
and Simon (1972). This is illustrated in Figure 2 where the operator names are written
inside the large rightward-pointing arrows. Operators are actions in a problem space that
take an incremental parser into a new state. In this overview of conceptual background,
we leave the notion of state intentionally vague. We note, however, that at a minimum
states must include information about the dependency arcs that have been drawn by earlier
operators.

As in other cognitive problem spaces, an incremental parser may not be able to
determine locally which operator leads to a successful analysis. This is the familiar notion of
garden-pathing, where local decisions lead to errors in the global parse. Parallel processing
represents a way to hedge bets about which pathway will ultimately work out. If enough
memory is available, all states can be retained, and exhaustive search can be relied upon
to find the best path. On the other hand, if only a limited amount of memory is available,
difficult choices need to be made about which states are kept and which are discarded.4

A parallel parser exploring the space depicted in Figure 2 might be said to be in the
disjunction of states (b) or (c) at the word left. With broad-coverage grammars, these
disjunctions can get very wide very quickly. Long sentences can lead to states with many
possible successors if a parser has to consider many potential attachment sites. To put it
another way, if the grammar doesn’t rule out enough attachment possibilities, the problem
space that the parser must navigate can have a high branching factor. Figure 2’s miniature
problem space has a branching factor of two: from the state marked (a), two different
successor states can be reached depending on whether the DRAW-ARC operator or the
SHIFT-WORD operator is chosen.

A major research goal within computational psycholinguistics is to find human-like
parse ranking schemes that push the scores of reasonable and ridiculous analyses far apart.
In this work we adopt a simple regime where the score of a state is the product of the
conditional probabilities of all the operator-applications, or transitions between states, that
it took to arrive at that state. These probabilities are based on simulated “experiences”
reading German newspaper text (S. Brants et al., 2004). We train our parsers on 70,602
sentences from the Frankfurter Rundschau.5 The probability model itself reflects the truism

1993; Sturt & Crocker, 1996; Buch-Kromann, 2001).
4This picture is, in practice, complicated by the fact that significant economies can be gained by shar-

ing the representation of parser states that overlap in some way. In this paper we do not address the
cognitive implications of structure-sharing.

5The sentences come from full articles sampled from all domains in the Frankfurter Rundschau except
regional and sports news. These domains are excluded because they contain fewer complete sentences
(S. Brants et al., 2004). Further details are reported in Appendix A and largely follow Nivre (2006).



that people’s sentence comprehension is largely determined by words they have already
heard, as opposed to those they have yet to hear.

The simple model that we use in this paper is neither complete in the sense of being
guaranteed to visit all states, nor is it a language model in the technical sense of defining a
distribution on an infinite class of word-sequences. We impose these limitations in an effort
to define a more psychologically-realistic hypothesis. Curtailing the idealizations inherent
in earlier work (Hale, 2001) we view the computational limits of this parser as bounds
on rationality (Simon, 1955; Gigerenzer et. al, 1999). By focusing on the parsing process
as opposed to the language definition, and by introducing a parametic memory limit, we
attempt to move towards a model that corresponds to the way human parsing does work
— rather than the way it ought to work.

Having outlined the methodology and a few points of background, the next section
sketches out this particular study’s implementation of the surprisal and retrieval complex-
ity metrics in a common parsing mechanism.

A systematic collection of comprehension-difficulty theories

As indicated in Table 1, our goal is to compare the predictions made by alternative
theories of sentence comprehension difficulty against the fixed set of observations collected
in the PSC. To ensure that these comparisons are interpretable, we consider just one basic
parsing mechanism. We vary both the amount of memory available for parallel processing
as well as the way in which we interpret the parser’s internal states as making psychological
difficulty predictions. This interpretation is known as the complexity metric. A complex-
ity metric is not itself a theory of sentence processing, but rather an auxiliary hypothesis
that, in combination with a parsing mechanism, can be used to draw difficulty predictions
for given sentences. The parsing mechanism outlines how the sentence is understood; the
complexity metric identifies which parts of this process are cognitively taxing. In this sec-
tion, we describe a parsing mechanism and two complexity metrics. We refer to the same
German example throughout to show how difficulty predictions follow from each metric.

A parallel-processing variant of Nivre’s dependency parser

The incremental parsing mechanism applied in this paper uses operators defined
by Nivre (2004). Rather than just one DRAW-ARC action, Nivre distinguishes between
operators that draw left-pointing arcs and operators that draw right-pointing arcs. Building
on the work of Covington (2001), Nivre also includes an operator called REDUCE. This
operator allows the parser to rule out words as potential attachment sites to the left.
REDUCE can lessen the branching factor in problem sub-spaces by eliminating attachment
possibilities. The dual of REDUCE is SHIFT, which brings new words under consideration
for eventual casting in the role of head or dependent. These four operators are summarized
informally in Table 2. Appendix A provides additional details.

LEFT the next word becomes the governor of the closest attachment site

RIGHT
the next word becomes a dependent of the closest attachment site
and becomes itself a potential attachment site

SHIFT the next word becomes a potential attachment site; no arcs are drawn

REDUCE rule out closest attachment site

Table 2: Informal description of Nivre parser actions



Our implementation deploys these operators in a probabilistic, incremental depen-
dency parser for part-of-speech tag sequences.6 We impose no categorical matching re-
quirements on the system. By contrast, in an explicitly grammar-based parser, if a de-
pendency arc fails to be licensed by a rule, then states incorporating that arc are not
considered. In our probabilistic Nivre implementation, all conceivable attachments, even
those that are ungrammatical, are possible; we leave it to the system of ranking preferences
to determine which is best.

To deploy the Nivre operators in a parallel parser, we apply a standard technique
from artificial intelligence (AI) called local beam search (Russell & Norvig, 2003, 115). The
“beam” in local beam search names the collection of states that are still in play at any
given word. Local beam search subsumes the idea of ranked parallel parsing in the sense
that it is defined on states rather than analyses. States incorporate more information than
just a partial dependency graph. For instance, states may include, as a result of REDUCE,
information disqualifying certain words from ever serving as attachment points.

We use the symbol k to identify the maximum number of states that a local beam
search procedure can handle at any particular iteration. Since each state contains just
one (partial) dependency analysis, this number is the same as what Fodor et al. (1974)
refer to as n. However, in what follows, we stick to the AI notation to avoid confusion
with the standard psychological notion of number-of-participants. For local beam search
to have beam-width k means that, out of all the successor states reachable by any operator
from any parent state in the previous beam, only the top k best states will survive in the
next iteration of search. This use of a fixed parameter to control parallelism contrasts
with that of Roark (2004,2009). Roark uses a self-adjusting beam defined in terms of his
probability model. Under this arrangement, the degree of parallel processing can go up
or down depending on how focused the ranking preferences are in a particular state. Our
method permits the sentence processing theorist to vary one without disturbing the other.

Perhaps the clearest way to think about parallel processing in this context is to
view the beam of alternative states as a kind of “macrostate”. From word to word, the
incremental parser occupies a particular macrostate composed of up to k microstates.
Each new iteration of local beam search considers all possible successor states attainable
via the Nivre operators in Table 2. But only the highest-scoring k states out of these
candidate successors are included in the next macrostate. The theoretical challenge is
to somehow aggregate aspects of the microstates into difficulty predictions that faithfully
index the computational work going on in the transition from macrostate to macrostate.
The following subsections describe two different ways of doing this.

Surprisal

Attneave (1959, 6) introduced the term “surprisal” to cognitive science as part of
a wave of interest in information-processing and information theory during the late 1950s
and early 1960s. A surprisal is the logarithm of the reciprocal of a probability. By an
elementary law of logarithms this is equivalent to the negative-log of the probability itself.
This mathematical definition, discussed further in Appendix C, codifies the commonsense
idea that low-probability events are surprising. The logarithmic aspect of the formulation
follows Hartley (1928). Hale (2001) revived surprisal as part of a way to predict sentence
processing difficulty at a word. He used Stolcke’s Earley algorithm to work out the to-
tal probability of all parser states reachable before a word, denoted αi−1 as well as after
the word, denoted αi (Earley, 1970; Stolcke, 1995). The ratio of these two values is the

6S. Frank (2009) and Demberg and Keller (2008) call their work at this level of analysis “unlexicalized
surprisal.”.



transition probability at the ith word of a sentence. The negative logarithm — the surprisal
— of this transition probability indexes how “surprising” the transition itself is, compared
to other transitions a parser might have been forced to go through. This method makes it
possible, at least with small grammars, to calculate the total probability of all reachable
parser states at intermediate points within a sentence.7 We shall refer to this as the “ideal”
prefix probability because it reflects all possible ways of parsing the first i words or the
prefix of length i. The summation implied by the phrase “total probability” is explicitly
written-out below in Definition 1.

αi =
∑

t is a sequence of parser operations
that successfully analyzes up to position i

Prob(t) (1)

The notation Prob refers to the score associated with a parser state. In this paper, Prob(t)
is the product of the probabilities of all the operators in the sequence t = t0, t1, t2, . . . , tm
where m ≥ i. Given a definition of α, the surprisal associated with a transition between
positions i− 1 and i would then be as in Definition 2.

surprisal(i) = − log2

(
αi

αi−1

)
(2)

Any modeling based on Definition 2 proceeds from the idealization that all possible syn-
tactic analyses of the prefix string may influence difficulty at the next word. The definition
expresses this idealization by the variable t in Definition 1 being universally quantified: the
summation is over all sequences of operator-applications — a set of size 4m. This assump-
tion is only reasonable in the context of small grammar fragments. From the perspective
of broad-coverage grammars, the number of possible analyses becomes truly daunting.
Most of these are linguistically implausible readings that no human would ever consider
as part of a natural interpretation of an initial sentence fragment.8 To our taste, detailed
consideration of all of these improbable analyses suggests a kind of omnipotence upon
which modern psycholinguistics has, at the very least, cast some doubt. In the spirit of
bounded rationality, we instead use Definition 3 in this paper as a more realistic substitute
for Definition 1.

αk
i =

∑
t is a sequence of parser operations
that successfully analyzes up to position i
and arrives at one of the top k states

Prob(t) (3)

The superscripted k in αk
i is exactly as described above in the explanation of local

beam search. Surprisal, when calculated using αk as defined in 3 for some parallelism
7The feasibility of calculating ideal prefix probabilites is underwritten by the fact that the Earley parser

is a chart parser that aggressively shares the substructure of derivations. See footnote 4.
8While it is a truism in computational linguistics that broad-coverage grammars license many implausi-

ble analyses, the notion of “bad syntactic analysis” is as slippery as the notion “good syntactic analysis.”
Absent some independent yardstick of linguistic quality — perhaps a panel of human judges or a for-
mal grammar of German — all that can be said is that an analysis found by a parser either matches the
human-supplied annotation or it does not. Indeed, in incremental parsing, analyses may be postulated that
would have been linguistically-reasonable if only the sentence had ended some other way. At this time, no
appropriate yardstick of this kind exists for the prefix strings of PSC sentences. We thus forgo systematic
linguistic assessment of these transient structures in this work.



level k reflects just those parser states that are actually visited by the local beam search
procedure. The variable t ranges over just those sequences of operations that managed to
remain in the top k the entire way out to position i. Surprisal at a word is still defined on
macrostates as in Hale (2001) but in this bounded-rationality formulation, there is a limit
(k) on the number of microstates that a macrostate may contain.9 One might identify
the quantity − log

(
αk

i /α
k
i−1

)
as “realistic surprisal.” It is a surprisal, but it is a surprisal

derived from a less-idealized parsing model that incorporates local beam search.

Surprisal: a worked example. To see how surprisal works, consider the words goss
and Kapitaen in Figure 3. As indicated in the thermometers below the words, surprisal
is lower at the verb goss than it is at the noun Kapitaen.

Figure 3. Surprisal is a word-by-word complexity metric.

It is comparatively unsurprising that a verb should follow a noun in a German sentence.
Indeed, these surprisal values reflect distributional regularities in the newspaper-text on
which the parser was trained (see Appendix A for details). However, this relationship is not
direct. Rather, it is mediated by the unseen syntactic structure that the parser recovers.
The surprisal values used in this paper follow from the choice of particular operations used
to build the syntactic analysis. Table 3 shows the operations used to build the analysis
depicted in Figure 3.

Figure 4 depicts the numerical ingredients of this “realistic” surprisal complexity
metric in a k = 3 parser operating on our running example sentence from Figure 3. The
boxes indicate the states the parser visits, with states vertically ordered by their probability.
The input sentence is laid out horizontally across the page, with grey lines signifying
transitions between words.

The numbers inside the state boxes indicate the precise height of the box; they are
sometimes called forward probabilities. These forward probabilities do no more than record
the product of operator-application probabilities on paths that lead to this state. These
operator-application probabilities are given as numerical annotations on the lines connect-
ing the state boxes. The heavy line is the path corresponding to the operator sequence
in Table 3. Relatively low surprisal at goss restates the fact that the negative log ratio
of α3

goss and α3
Kapitaen on this probability model is small. We say that the surprisal of the

word in that position is 0.879 bits. Surprisal is greater at the noun Kapitaen because the
9This memory limit k is plays an important role in the parsing mechanisms we consider in this paper.

As the main text indicates on page 8, we do not impose any hard constraints on possible parser actions.
Rather, all knowledge of German is encoded as parsing preferences. It is the memory limit’s thresholding
action on the probability model, rather than any a priori grammar, that eliminates analyses from the
beam. At k = ∞, in an exhaustive parser where such filtering is “turned off”, the forward probabilities α
would all be the same and surprisal would be identically zero on all words. This limiting behavior reflects
the particular formulation of the Nivre parser (see Appendix C). Parsers that do employ an a priori
generative grammar, as in Hale (2001) or Demberg and Keller (2008), could still derive nonzero surprisal
values even at this limit.



1. Shift ART
2. Shift ADJA
3. Left NN ← ADJA
4. Left NN ← ART
5. Shift NN
6. Left VVFIN ← NN
7. Shift VVFIN
8. Right VVFIN → ADV
9. Shift ART

10. Shift PIAT
11. Left NN ← PIAT
12. Left NN ← ART
13. Reduce ADV
14. Right VVFIN → NN
15. Reduce NN
16. Right VVFIN → APPR
17. Shift PPOSAT
18. Left NN ← PPOSAT
19. Right APPR → NN
20. Reduce NN
21. Reduce APPR
22. Reduce VVFIN

Table 3: Parser state trajectory for the sentence depicted in Figure 3.

Figure 4. Sketch of surprisal calculation for a k = 3 parser.

total probability of the parser actions required to extend the previous best-states to cover
that word is comparatively low (recall that surprisal is a negative logarithm of a probabil-
ity). This compulsion to transit low-probability states is indexed by greater surprisal at
Kapitaen compared to goss.

A bigram or trigram model could also capture the fact that a noun is likely to follow
an adjective. However, surprisal in a dependency parser can reflect very long-distance
dependencies like the seven word span in Figure 5. This ability stands in contrast with
Markov models, which are subject to a finite length limit (Park & Brew, 2006).



Figure 5. The longest dependency in the PSC.

Surprisal imposes comparatively few requirements at the implementation level. It
has been combined with a variety of language-analysis devices including the Simple Recur-
rent Network (S. Frank, 2009). Surprisal is also agnostic about the degree of parallelism.
This differs from the Tuning Hypothesis, which is serial (Mitchell, 1994, 1995). In subse-
quent sections we leverage this generality to examine different theories of comprehension dif-
ficulty that all share the surprisal complexity metric but make different commitments as
regards parallel parsing.

Retrieval

The temporal nature of speech suggests that sentence understanding requires a com-
prehending person to remember properties of earlier words. As each new word is heard,
linguistic structures associated with earlier words need to be retrieved to perceive the
meaningful content of the sentence. Does such “remembering” employ the same work-
ing memory as the rest of cognition? The cue-based retrieval theory of Lewis and Vasishth
(2005) (henceforth, LV05) holds that it does, integrating an account of sentence process-
ing difficulty into a general theory of cognitive architecture, ACT-R (Anderson & Lebiere,
1998; Anderson, 2005). In this work we re-formalize a subset of key theoretical ideas from
LV05 in the dependency parsing system described above.

Absent some degree of familiarity with ACT-R itself, these theoretical choices may
appear arbitrary. But they constitute a zero-parameter model. By zero-parameter model,
we mean that the same ACT-R assumptions that have been repeatedly applied to different
domains of cognition over the years also seem to apply in accounting for sentence compre-
hension difficulty. Success in the domain of sentence comprehension strengthens the overall
case for ACT-R as a general theory of cognition.

ACT-R. ACT-R is an acronym that stands for Adaptive Control of Thought —
Rational. It represents the latest in a series of cognitive architectures developed over
the past thirty years by John R. Anderson (1976, 1983, 1990). Each of these theories is
different, but there are identifiable themes that have persisted throughout Anderson’s work.
The most fundamental theme is that computational modeling of human cognition is not
premature. Rather than being simply an equivalent calculation or an abstract description
of what cognitive agents do, Anderson’s cognitive architectures have all been intended as
detailed, practical theories of what is actually going on in the minds of real people engaged
in tasks that require intelligence. Although pursuit of this goal has led Anderson and his
colleagues to develop computer simulation programs that are consistent with the theories,
the programs themselves are not the theories. They do, however, make it much easier to



work out the consequences of more complete theoretical proposals.
Another theme running through Anderson’s work is the distinction between proce-

dural and declarative knowledge. This distinction is reified in ACT-R, which has both a
declarative memory for “facts” and a procedural memory for things that the model “knows
how to do.” Each sort of knowledge is particular to a domain. In a cognitive model of
arithmetic, a fact might represent the knowledge that twelve times seven is eighty-four,
whereas in a sentence-processing model, a fact might encode the belief that a particular
noun-adjective combination forms a phrase. In ACT-R, individual declarative memory el-
ements are known as chunks. Each one has an activation level that determines the latency
and accuracy with which it can be retrieved. Chunks are to be contrasted with pieces
of procedural knowledge. Anderson’s work adopts the idea of a production system from
Newell and Simon (1972). A production is an association between two states of mind.10

If a production applies, a thinker transits from the old state-of-mind to the new state
of mind defined in the production. ACT-R countenances exactly one state of mind at
any given instant. To put it another way, “the production system comprises the central
bottleneck” (Anderson, 2005, 315).

Sentence processing as memory retrieval. LV05 argue not only that ACT-R is an
appropriate medium in which to express parsing models, but indeed that its specific the-
oretical commitments make sense of several outstanding puzzles in the field of human
sentence comprehension. As a step towards a complete cognitive model of sentence com-
prehension, LV05 define a production system that incrementally builds syntactic structure
in declarative memory. These structures respect X-bar theory, an approach that incorpo-
rates ideas from dependency grammar quite directly (Kornai & Pullum, 1990). Because
these syntactic structures are built using procedural knowledge in ACT-R, the model is a
serial parser. To postulate, as LV05 do, that the developing syntactic structures are held in
declarative memory, is to hypothesize that these are subject to the same activation dynam-
ics as in other cognitive domains. Individual productions in the LV05 production system
access declarative memory to attach new pieces of sentence structure. LV05 show that the
pattern of retrieval latencies derived from these memory accesses, under standard ACT-R
assumptions, derives human reading time patterns across a range of English constructions
that includes center-embedding, garden-path sentences, and relative clauses.

The ACT-R chunk-activation dynamics thus play a key role in LV05’s activation-
based sentence processing model. These dynamics give rise to two effects, decay and
similarity-based interference (SBI). Decay and SBI also appear in memory tasks with non-
linguistic stimuli (Anderson et al., 2004). The idea of decay is that words heard farther
back are more difficult to retrieve for attachments; this idea is realized in work by Just and
Carpenter (1992, 133) and in abstract form by Chomsky (1965, 13-14) as well as Gibson
and colleagues (Gibson, 1998, 11), (Gibson, 2000; Warren & Gibson, 2002; Grodner &
Gibson, 2005).11 The idea of SBI, spelled out explicitly in the context of sentence pro-
cessing by Lewis (1993, 1996), is that earlier words can act as distractors if they happen
to match along certain cues, like plural number, accusative case, or animacy. Such dis-

10A production’s ability to refer to intermediate states of mind differentiates it from the classic notion
of an association between overt stimulus and overt response. This aspect renders production systems
“cognitive” as opposed to merely behavioral models.

11It may be worth noting some differences between the two most recent variants of the decay idea.
Both the DLT and LV05’s activation-based theory predict that recency decreases difficulty. However, the
DLT does not include any notion of interference. Moreover, LV05’s activation theory, but not the DLT,
acknowledges the possibility of re-activation. Such re-activation can account for cases where increased
head-dependent distance facilitates comprehension (Vasishth & Lewis, 2006; Shaher, Engelmann, Logačev,
Vasishth, & Srinivasan, 2009; Hofmeister, 2009).



tractors make sentence comprehension harder at points where an earlier word must be
retrieved (Van Dyke & McElree, 2006). Both of these effects are widespread (Lewis &
Nakayama, 2001; Van Dyke & Lewis, 2003; Van Dyke & McElree, 2006; Van Dyke, 2007;
Vasishth & Lewis, 2006; Hofmeister, 2007; Logačev & Vasishth, 2009).

We adapt the ACT-R theory of memory-element activation dynamics applied in
LV05 to the broad-coverage dependency parsing system discussed above. In this broad-
coverage setting, we leave hand-crafting of the grammar behind (cf. Patil, Vasishth, &
Kliegl, 2009). But we retain ACT-R’s power-law of activation decay. We also retain
LV05’s interpretation of parser actions as productions that cause retrievals. Specifically,
we interpret the LEFT and RIGHT operators as causing a retrieval of the word at the left
end of the newly-drawn dependency arc. The latency of these retrievals, as a function of
the ACT-R declarative memory chunk dynamics, is the key determinant of the difficulty
prediction that we deduce on this complexity metric.

Similarity-based interference and the fan effect. One of the phenomena that the
ACT-R declarative memory theory is designed to derive is called the fan or “min” ef-
fect (Anderson, 1976, 276). Anderson (1974) finds that, in a memory test, participants’
verification responses about a remembered entity grow slower as more propositions come
to be associated with that entity. For instance, in Figure 6, a hippie would be remembered
in a memory chunk to which three properties are linked. It has a fan of 3.

hippie

smells like patchouli

is in the park

opposes war

Figure 6. A fact in memory to which other facts are connected.

As a subject links more properties to the same entity, pushing the fan value up, it
takes longer and longer to verify probe propositions in a set that was previously learned to
criterion. The standard ACT-R memory dynamics in the LV05 model derive this behavior.
In LV05, “fan” reflects a panoply of linguistic factors including morphological features
like tense and number, but also tree-geometric connections to other nodes in a developing
phrase structure.

This paper’s adaptation of LV05 to broad coverage and parallel parsing is much
simpler. It derives the fan effect from just one cue: a word’s part of speech. We theorize
that retrievals are delayed by a factor reflecting the presence of other words sharing the
same grammatical category that have come earlier in the input sentence. This principle
applies to all words, regardless of their attachment status, thus implementing a simplified
version of similarity-based interference. The motivation for reducing the cues to part-
of-speech is merely a matter of convenience: if more detailed information were available
for each word to be processed (e.g., case and animacy information), these cues could be
deployed in the calculation of interference costs. Our adaptation should therefore be seen
as a simplifying assumption which could in principle be extended.

Retrieval: a worked example. To see how retrieval works, consider the first few
words, Der, alte and Kapitaen of our running example. The problem states explored by



Figure 7. Sketch of retrieval times for a k = 3 parser.

a k = 3 parser are arranged by predicted difficulty in Figure 7. This figure is analogous to
the earlier Figure 3, but note that the vertical axis is predicted duration in milliseconds,
rather than predicted surprisal in bits. Times accumulate for parser actions associated
with a single word, but are reset between words.

Figure 8 shows the time course of events postulated in the model for the top three
analyses at Kapitaen. All times are cumulative except for Action Time, which is specific
to each word’s parsing time. The first two words are handled with the SHIFT operator,
and each takes a constant amount of time. For the top analysis (1), the LEFT operator
applies twice to attach the article Der and the adjective alte as dependents of Kapitaen;
these are steps 3 and 4 respectively from Table 3. The retrieval of Der takes longer than
the retrieval of alte because its memory chunk’s activation has decayed ever so slightly.
For the remaining two analyses in the diagram, the parse time for Kapitaen is shorter
because fewer words are retrieved.

The durations in Figure 8 reflect the time it takes to parse each word. For larger
beam-widths, we take the maximum retrieval time for any analysis in the beam. Selecting
max as the mode of combination means that the predictions reflect difficulty associated
with the worst-case analysis in the beam.12

The equations defining the ACT-R memory chunk dynamics are provided in Ap-
pendix B. Aside from our assumptions about the scale of constant durations of Nivre
operators, the particular formulation of retrieval given above follows directly from princi-
ples of ACT-R. The numerical constants in Equations 8-11 of the Appendix are kept at
the default ACT-R values used in previous sentence comprehension models like LV05 as
well as in other domains. This implementation of retrieval is thus a zero-parameter model

12An anonymous reviewer brings up the wide variety of alternatives to this “max” mode of combina-
tion. Another attractive mode of combination would weight the retrieval times by the probability of the
operator-application that causes the retrieval. At high parallelism levels, under this “nondeterministic se-
rial” arrangement, retrievals that would have been long in duration are weighted by smaller and smaller
probabilities. Thus, we expect that only the retrievals occuring in the highest-probability analysis will have
much effect on the overall prediction. This arrangement makes it harder to examine the role of ranked par-
allelism in human sentence processing and for this reason we decided not to pursue it in the work reported
here. However we believe it holds considerable interest for the development of serial parsing theories.



in the sense that no ACT-R parameters are estimated.
Examining both surprisal and retrieval in the same incremental parser states facil-

itates a fine-grained analysis of the differences between the two complexity metrics. The
next sections compare the predictions of the two metrics to fixation durations recorded in
the Potsdam Sentence Corpus.

Fixation durations in the Potsdam Sentence Corpus

This section examines how surprisal and retrieval predict eye fixations for the PSC.
The first section describes the PSC data, followed by a discussion of how our approach
relates to eye-movement control models. We then detail the methods, results, and impli-
cations of this study.

Data

Reading involves an alternation of fixations and saccades that move words into the
center of the visual field. In the PSC, fixations between saccades last mostly between 150
and 300 ms, with a mean single-fixation duration of 206 ms (Kliegl, Nuthmann, & En-
gbert, 2006). The eyes do not solely move forward from word to word in a left-to-right
fashion with single fixations (40%), but they also skip (21%) or refixate (13%) words, or
regress back to a previous word of the sentence (8%). These eye movements are correlated
with many indicators of local processing difficulty, such as unigram frequency, bigram fre-
quency, predictability,13 and length of the fixated word. The direction of effects is generally
compatible with intuitive notions of processing difficulty: short, frequent, and predictable
words are more frequently skipped, less frequently refixated, and have shorter fixation
durations when they are fixated in comparison with long, rare, and unpredictable words.
Longer fixation durations immediately before highly predictable words constitute a notable
exception to this general pattern.

First-pass regression probability and various fixation measures are often characterized
as “early” and “late” measures, with an implied mapping to “early” and “late” stages of
cognitive processing. Early processing stages refer to the subprocesses of word identification
comprising extraction of visual, orthographic, and phonological features subserving lexical
access. Late stages refer to the difficulty of syntactic, semantic, and discourse integration.
However, Clifton, Staub, and Rayner (2007) advocate caution in drawing such a simple
relation between “early” and “late” measures and early versus late stages of cognitive
processing. As they put it,

The terms “early” and “late” may be misleading, if they are taken to line up
directly with first-stage vs second-stage processes that are assumed in some
models of sentence comprehension (Frazier, 1987; Rayner, Carlson, & Frazier,
1983). Nonetheless, careful examination of when effects appear may be able
to shed some light on the underlying processes. Effects that appear only in
the “late” measures are in fact unlikely to directly reflect first-stage processes;
effects that appear in the “early” measures may reflect processes that occur in
the initial stages of sentence processing, at least if the measures have enough
temporal resolving power to discriminate among distinct, fast-acting, processes.

(Clifton et al., 2007, 349)

13Predictability in this sense refers to difficulty a human participant has guessing a word given its left
context. Predictability can be estimated using variants of the Cloze procedure (Taylor, 1953).



We follow Clifton et al. (2007) in characterizing dependent measures as “early” and “late”
without committing to a simple mapping between early and late stage processes. Indeed,
the results to be presented below confirm the cautionary message of the above quote. The
analyses we present in subsequent sections do not support a simple mapping of measures
to parsing stages.14

Table 4 defines the dependent measures — four fixation measures along with first-
pass regression probability — that are considered in this study. The early measures take
into account first pass data, whereas the late measures encompass both first and subsequent
passes.

Early Measures
Single Fixation Duration (SFD)
The amount of time a word is fixated in first pass if it is only fixated once.
First Fixation Duration (FFD)
The amount of time a word is fixated during the first fixation in first pass.
Regression Probability (REG)
Likelihood of regressing to a previous word during the first pass.

Late Measures
Regression Path Duration (RPD)
The sum of all reading times at a word and all words to its left, starting from the
first fixation in the word until the first fixation past the region.
Total Reading Time (TRT)
The sum of all fixation durations at a word, including first pass and re-reading.

Table 4: The four fixation measures and one regression probability modeled in this study.

Relation to eye-movement control models

In his review Rayner (1998) highlights how, in recent years, the link between fixa-
tion durations and the oculomotor, perceptual, and cognitive processes that drive them
has been enhanced considerably by mathematical models of eye-movement control. The
two most prominent cognitive processing models, E-Z Reader (Reichle, Pollatsek, Fisher,
& Rayner, 1998; Pollatsek, Reichle, & Rayner, 2006) and SWIFT (Kliegl et al., 2004;
Engbert, Nuthmann, Richter, & Kliegl, 2005) predict fixation durations as a function of
word frequency and length. They also account for fixation positions in words. However,
the role of parsing actions in eye-movement control is yet to be investigated; work by
Reichle, Warren, and McConnell (2009) is the first major attempt in this direction. One
reason for the absence of a parsing theory in eye-movement control models is that until
quite recently large-scale computational models of parsing cost were unavailable. This sit-
uation has recently changed. The work of Hale (2001), Levy (2008), Boston, Hale, Patil,
Kliegl, and Vasishth (2008) and Demberg and Keller (2008) makes it possible to consider,
for arbitrary sentences, the role of parsing costs in co-determining fixation durations and
eye-movement patterns in conjunction with eye-movement control. Although investigating
this relationship is by no means going to be trivial or straightforward, the development of
large-scale parsing models is an important step in this direction.

14Note that early and late measures are also compromised by being derived from overlapping sets of data
(i.e., Single Fixation Durations are a subset of First-Pass Gaze Durations, and Gaze Durations are a subset
of Total Reading Time). This positive dependency will tend to diminish any differential effects between
early and late measures.



In this study we extend the above-mentioned large-scale investigations of surprisal
by testing the predictions of both surprisal and retrieval on a German eyetracking dataset.
Both factors are predicted to help in modeling the fixation data, but, because they make
different claims about the source of human processing difficulty, they could model different
sources of difficulty in the data.

Method

The Potsdam Sentence Corpus provides the data for this study. As mentioned above
on page 2, the dataset consists of 144 individual German sentences (1138 words) read by
222 native German speakers. When first and last words are removed to reduce start-up
and wrap-up effects, fixations for the 850 remaining words are available for each of the
five measures in Table 4. We do not consider fixations with durations of less than 50 ms.
The dataset is further restricted to just those words where a retrieval is postulated, since
retrieval does not make any interesting prediction on words where no attachment occurs.15

The cardinality of this set varies with beam-width, from 668 words at k = 1, to 841 words
at k ≥ 6. The occurrence of regressions is binomially coded, with 1 indicating a regression
occurred during first pass, and 0 that a regression did not occur.

The surprisal and retrieval predictions follow from parser runs at a systematic
selection of beam-widths, schematically indicated in Table 1. The beam-widths are
k = 1, 5, 10, 15, 20, 25 and 100. The retrieval and lexical predictors are log-transformed
to avoid multiplicativity effects in the statistical analysis and to ensure that the residuals
are approximately normally distributed (Gelman & Hill, 2007).

The statistical evaluation of the surprisal and retrieval predictions uses the linear
mixed model (Pinheiro & Bates, 2000) provided in the statistical computing software R
(R Development Core Team, 2006) and its lme4 package (Bates, Maechler, & Dai, 2008).
Linear mixed models are regression models that take into account group-level variation,
which is present in psycholinguistic data via the participant and item factors. Including
both fixed effects (e.g. predictors for the fixations) and random effects (e.g. participant,
item) allows one model to take into account both within-group and between-group varia-
tion for the intercepts (Demidenko, 2004). To model regression probability, we employ a
generalized linear mixed model with a binomial link function. Further details regarding
linear mixed models are provided in textbooks such as Baayen (2008) and Gelman and Hill
(2007), as well as in the Special Issue of the Journal of Memory and Language entitled
“Emerging Data Analysis” (Volume 59, Issue 4).

We fit four mixed effects models to each of the dependent measures described in
Table 4. The baseline model given in Equation 4 incorporates the lexical factors described
in the previous subsection: word length (len), word predictability (pred), unigram frequency
(freq), and bigram frequency (bi).

log(y) = β1freq + β2len + β3bi + β4pred + bp + bq + ε (4)

The dependent measure, generically denoted y, is log-transformed so that it can be modeled
linearly, and each of the lexical predictors are added to the group-level intercept variation
for participant (bp) and item (bq). The subscripts in these quantities range over partici-
pants p and items q. The element that is estimated for each of the lexical predictors is
the coefficient β. Each of the lexical predictors are additionally centered so that its mean

15To clarify the scope of the retrieval theory, the main text reports the number of PSC words on which
the dependency parser postulates a retrieval. The linear regression models described in this paper are fitted
to these points. However, the results do not change when all words are included in the analysis.



is zero. This allows the intercept and the coefficients for each predictor to be interpreted
given the average value of the other predictors.

Three other models for each fixation are fit: a baseline plus surprisal (surp, Equa-
tion 5), a baseline plus retrieval (ret, Equation 6), and a model that incorporates all
predictors (Equation 7).

log(y) = β1freq + β2len + β3bi + β4pred + β5surp + bp + bq + ε (5)
log(y) = β1freq + β2len + β3bi + β4pred + β5ret + bp + bq + ε (6)
log(y) = β1freq + β2len + β3bi + β4pred + β5surp + β6ret + bp + bq + ε (7)

Comparisons between linear mixed models are based on log-likelihood ratios, penal-
izing models for a large number of parameters. We use the traditional maximum-likelihood
based χ2-statistic to this end, with increases in log-likelihood indicating a better model. As
Pinheiro and Bates (2000) and Faraway (2005) point out, comparing models with different
fixed effects yields anti-conservative p-values (i.e., the p-value may be higher than sug-
gested by the model comparison). Faraway (2005) suggests using the parametric bootstrap
instead. Note that the anti-conservativity problem is not so severe when large quantities
of data are available relative to the parameters fit; this is the case in our dataset. How-
ever, in order to confirm that our model comparisons are not misleading, we carry out
the parametric bootstrap for all the reading time measures as detailed in Appendix D.16

None of these simulations yield interpretations different from model comparisons based on
the χ2-statistic. Furthermore, model comparisons using the Akaike Information Criterion
(Akaike, 1973) and Deviance Information Criterion (Spiegelhalter, Best, Carlin, & Linde,
2002; Spiegelhalter, 2006) are also consistent with our conclusions.

Results

At low beam-widths, surprisal (Equation 5) best models the fixation duration mea-
sures. Figures 9(a) and 9(b) plot the fitted values of β5 and β6 respectively in this model for
each fixation measure. Coefficients greater than zero imply that increases in the predictor
are associated with increases in y. 95% confidence intervals that do not cross 0.0 indicate
statistical significance at α = 0.05. At k = 1 surprisal has statistically significant positive
coefficients for all fixations and the regression probability in Figure 9(a). Retrieval, on
the other hand, makes the incorrect prediction: at low beam-widths, increasing retrieval
difficulty predicts shorter fixation durations.

Although at a low beam-width only surprisal correctly predicts fixation durations
and regression probability, at a higher beam-width, retrieval is also a predictor. Figure 10
shows surprisal’s and retrieval’s predictions in parsers of greater and greater beam-width.
Each eye-movement measure introduced in Table 4 receives its own sub-graph in Figure 10.
Table 5 shows that the two predictors are uncorrelated across all beam-widths k except at
k = 1, where the correlation is 0.43. The measures are also uncorrelated with word pre-
dictability and unigram frequency.

Table 6 lists the log-likelihood values for the four models plotted for each individual
measure at k = 100. The overall worst model fit for all seven regressions is the baseline,
which only includes lexical factors (Equation 4). The best model for all fixation-based
measures, in bold text, includes both surprisal and retrieval as predictors. The best model
for regression probability includes only surprisal. Table 7 reports chi-square and p-values

16The ‘simulate’ function necessary for this procedure is not yet implemented for generalized linear mixed
models; therefore, we did not carry out a bootstrap for regression probability.



k s-r s-p s-f r-p r-f p-f
1 0.43 0.16 0.05 -0.05 -0.33 0.50
5 0.09 0.25 0.10 -0.03 -0.27 0.53
10 0.02 0.26 0.12 0.002 -0.23 0.53
15 -0.09 0.26 0.11 -0.04 -0.25 0.53
20 -0.11 0.27 0.11 -0.04 -0.22 0.53
25 -0.16 0.27 0.11 -0.06 -0.21 0.53
100 -0.07 0.26 0.09 0.13 0.07 0.53

Table 5: Correlations between surprisal (s), retrieval (r), predictability (p) and log-frequency (f) at
different beam-widths k

for comparisons between models 4–7 at the k = 100 parallelism level. This pattern of
statistically-significant differences is consistent across beam-widths. These model fit results
demonstrate the utility of both conceptions of comprehension difficulty. The full results of
the multiple linear regressions for k = 1 and k = 100 are shown in tabular form in Table 8.

Dependent measure Baseline + Surprisal + Retrieval + Both
SFD -21604 -21379 -21454 -21214
FFD -26265 -25859 -26055 -25636
RPD -78842 -78609 -78803 -78565
TFT -70552 -70370 -70523 -70338
REG -43246 -43189 -43729 -43717

Table 6: Log-likelihoods for each model and fixation duration for k = 100.

Dependent measure Baseline, Surprisal Baseline, Retrieval Baseline, Both
Chi-square p-value Chi-square p-value Chi-square p-value

SFD 450.64 <0.01 299.95 <0.01 780.07 <0.01
FFD 812.78 <0.01 419.78 <0.01 1259.1 <0.01
RPD 466.96 <0.01 79.152 <0.01 554.22 <0.01
TFT 363.19 <0.01 58.397 <0.01 427.60 <0.01
REG 114.15 <0.01 0 1 0 1

Table 7: Chi-square statistics for model comparison with baselines for k = 100.

Discussion

The main finding of this study is that whereas surprisal models parsing difficulty
reflected in fixation durations and regression probability at a low beam-width, k = 1,
retrieval does not. As the beam-width is widened, surprisal continues to predict difficulty
in all measures, and maximum retrieval cost predicts both early and late measures as
well as regression probability. Because predicted retrieval time-costs are aggregated across
beams using max, the retrieval score can only increase as k increases. These increases allow



k=1 k=100
Predictor Coef SE t-value Coef SE t-value

SFD (Intercept) 5.2752152 0.0091924 573.9 5.276e+00 8.872e-03 594.7
freq -0.0077595 0.0013829 -5.6 9.824e-04 1.163e-03 0.8
len 0.0060455 0.0006296 9.6 6.555e-03 5.691e-04 11.5
bi -0.0131116 0.0004734 -27.7 -1.164e-02 4.194e-04 -27.8
pred -0.0052508 0.0013195 -4.0 -1.709e-02 1.190e-03 -14.4
surprisal 0.0123101 0.0012256 10.0 4.384e-02 1.998e-03 21.9
retrieval -0.0001691 0.0000159 -10.6 1.545e-04 8.504e-06 18.2

FFD (Intercept) 5.269e+00 8.890e-03 592.7 5.273e+00 8.601e-03 613.1
freq -2.942e-03 1.254e-03 -2.3 5.982e-03 1.049e-03 5.7
len -2.040e-03 4.905e-04 -4.2 -1.390e-03 4.436e-04 -3.1
bi -1.321e-02 4.394e-04 -30.1 -1.224e-02 3.887e-04 -31.5
pred -1.664e-03 1.217e-03 -1.4 -1.475e-02 1.097e-03 -13.4
surprisal 1.460e-02 1.096e-03 13.3 5.209e-02 1.793e-03 29.0
retrieval -1.519e-04 1.412e-05 -10.8 1.594e-04 7.538e-06 21.1

RPD (Intercept) 5.471e+00 1.380e-02 396.4 5.472e+00 1.335e-02 410.0
freq -1.849e-02 1.749e-03 -10.6 -3.599e-03 1.466e-03 -2.5
len 3.731e-02 6.960e-04 53.6 3.624e-02 6.328e-04 57.3
bi -6.696e-03 6.115e-04 -11.0 -7.235e-03 5.425e-04 -13.3
pred -1.441e-03 1.709e-03 -0.8 -1.658e-02 1.544e-03 -10.7
surprisal 1.594e-02 1.557e-03 10.2 5.530e-02 2.534e-03 21.8
retrieval -2.864e-04 2.012e-05 -14.2 9.903e-05 1.060e-05 9.3

TRT (Intercept) 5.454e+00 1.346e-02 405.1 5.454e+00 1.304e-02 418.3
freq -1.164e-02 1.646e-03 -7.1 2.640e-03 1.380e-03 1.9
len 3.627e-02 6.555e-04 55.3 3.571e-02 5.958e-04 59.9
bi -1.249e-02 5.756e-04 -21.7 -1.233e-02 5.107e-04 -24.2
pred -1.635e-02 1.608e-03 -10.2 -3.034e-02 1.453e-03 -20.9
surprisal 1.380e-02 1.466e-03 9.4 4.588e-02 2.386e-03 19.2
retrieval -2.776e-04 1.895e-05 -14.7 8.008e-05 9.976e-06 8.0

REG (Intercept) -2.1483075 0.0331565 -64.79 -2.103e+00 2.352e-02 -89.43
freq -0.1975074 0.0130669 -15.12 -1.479e-01 1.054e-02 -14.03
len 0.0064848 0.0048715 1.33 5.261e-03 4.317e-03 1.22
bi 0.0927631 0.0046218 20.07 7.030e-02 3.930e-03 17.89
pred 0.0315408 0.0125868 2.51 -1.813e-03 1.105e-02 -0.16
surprisal 0.0394327 0.0113952 3.46 1.689e-01 1.767e-02 9.56
retrieval -0.0002378 0.0001450 -1.64 2.645e-04 7.667e-05 3.45

Table 8: Full results for multiple linear regressions, k=1 and k=100.

for the prediction of all dependent measures, suggesting that retrieval at low beam-widths
underestimates difficulty in fixation durations and regression probability.

General Discussion

This work measures the effectiveness of two syntactic complexity metrics, surprisal
and retrieval, in modeling sentence processing difficulty. The two metrics furnish differ-
ent sorts of accounts of processing difficulty. Surprisal hypothesizes that low-probability



attachments cause difficulty. Retrieval, on the other hand, attributes sentence processing
difficulty to working memory characteristics. To determine the relative contribution of
each, we use a common collection of incremental dependency parser states to work out the
consequences of each complexity metric. This methodology facilitates quantitative inves-
tigation of how these metrics play out at different levels of parallel processing.

Our findings suggest that the surprisal and retrieval predictions do not fall neatly
into the categories implied by the early/late distinction traditionally assumed in the eye-
movement literature.17 With a serial parser, surprisal is able to predict all eye-dependent
measures — even “late” measures such as Regression Path Duration (Clifton et al., 2007,
349). Retrieval, on the other hand, fails to provide a good account of the eye-dependent
data when deployed in a serial parsing system. But as we acknowledge greater and greater
levels of parallel processing, retrieval’s predictions get better and it is eventually able to
predict all eye-dependent measures. Indeed, in highly parallel parsers, retrieval is able to
predict “early” measures like Single Fixation Duration that were not formerly thought to
reflect working memory limitations (Ibid., 348). At these high parallelism levels, surprisal
and retrieval make convergent predictions: increases in either one are both associated with
behavioral indices of heightened comprehension difficulty.

These findings suggest that memory capacity, when formalized as beam-width, may
be an important modulator of each theory’s predictions. With surprisal, even a serial parser
is helpful in explaining German readers’ fixations. This result is consistent with the seri-
ality claims that underly garden pathing theories (Frazier, 1979; Frazier & Rayner, 1982)
and other theories that focus on serial processing (Mitchell, 1994, 1995). It confirms the
suggestion that a highly limited search space need not diminish a model’s cognitive fi-
delity (T. Brants & Crocker, 2000), and, we suggest, supports the view of human cognition
as “boundedly rational” in general (Simon, 1955; Gigerenzer et al., 1999; Howes, Lewis,
& Vera, 2009). In support of this view, our results show that ideal prefix probabilities
as in Hale (2001) and Levy (2008) are not necessary to predict syntactic difficulty in eye-
dependent measures.

The interplay of memory capacity with retrieval suggests that this metric, unlike
surprisal, requires a higher degree of parallelism to properly account for the difficulty of
ordinary reading. The regression models discussed above suggest that retrieval requires a
beam-width greater than 30 to predict all eye-dependent measures. Of course, this rather
specific number rests upon on a variety of assumptions. As detailed in Footnote 2, to
formalize memory for syntactic alternatives as a single, scalar parallelism level k is to gloss
over many well-known aspects of human memory. Some cognitive models incorporate inhi-
bition or interference processes into their conception of parallel processing (McClelland &
Elman, 1986). If these processes truly do affect human sentence comprehension, then their
omission from the parallel dependency parsing systems discussed in this paper could rep-
resent a discrepancy between theory and reality. These kinds of considerations underscore
the importance of continued research on parallel cognitive architecture. This and other
Future Work is discussed below.

Future Work

Our methodology sets up a framework for parallel parsing in which the question
of psycholinguistic adequacy can begin to be addressed. The reported results suggest

17A reviewer points out that data analyses were conducted on multiple dependent measures without
correcting for multiple comparisons. We believe, in this case, that the risk of error is very low because our
results do not seem to depend on differential outcomes for the various ways of doing model comparison.
Rather, all analyses point to the same conclusions.



that retrieval is a better predictor of German readers’ sentence comprehension difficulty
when it is applied in a parallel parser. This finding is at odds with the positive findings
of Lewis (1993) and Lewis and Vasishth (2005), whose serial parsers were sufficient to
account for well-known contrasts in human comprehension difficulty. From the perspective
of a cognitive architecture like ACT-R, the use of beam search in a parser corresponds to
parallel production-rule firing. This goes against a central ACT-R assumption, namely that
only one production rule fires at a time. However, investigators like Salvucci and Taatgen
(2008) have recently begun to explore alternatives to fundamental ACT-R assumptions in
models of human multitasking. Although these authors are concerned with multitasking
across different tasks, it may be possible to apply a similar extension of ACT-R to within-
task parallel processing. We leave this exciting possibility to future work.

Another interesting area for future work involves possible interactions between sur-
prisal and retrieval. Our research applies a methodology that compares the relative fit
of models that include surprisal and retrieval alone, as well as together. The superior-
ity of the combined models indicates that the two predictors do not overlap. Surprisal is
not subsumed by retrieval nor is retrieval subsumed by surprisal. If both metrics capture
something true about human sentence comprehension, then it is natural to seek a detailed
model that would explain why and how they are both involved. We have simply highlighted
the nonoverlapping character of the two types of accounts. The development of a truly
integrated model must await future work.

An even more substantial project would integrate additional elements from the orig-
inal ACT-R implementation into this model. For example, the parsing mechanism used
in this work does not represent explicit expectations for future words. Lewis and Va-
sishth (2005) found that such expectations interact with retrieval cues. Whereas Lewis
and Vasishth’s hand-coded production rules reflect phrase structures with intermediate
nodes such as Noun Phrase and Verb Phrase, the dependency parser applied in this work
does not deal with any such structures. In fact, Nivre (2004) suggests that no depen-
dency structure can faithfully implement the sort of “top-down” parsing strategy that
most straightforwardly reflects the intuitive idea of an expectation for upcoming words.
Future work should explore combinations of grammars and parsing strategies that can
model expectations, to fully carry out the program begun in Lewis and Vasishth (2005).

Similarly, lexical influences on human sentence comprehension are well-known (Ford,
Bresnan, & Kaplan, 1982; Mitchell, 1987; MacDonald et al., 1994; Boland, 1992; Boland
& Blodgett, 2006). The parser used to derive the reported results ignores these effects.
From its point of view, both ate and slept are treated as the same kind of past-tense verb
despite the fact that one is transitive. While unlexicalized models like this one are helpful
in isolating the role of syntactic processing, a lexicalized variant would open an exciting
array of additional questions. Such a model would undoubtedly be able to overcome the
sorts of typical attachment mistakes catalogued in Appendix A.

Indeed, lexicalism is just one of a constellation of tenets implicitly or explicitly as-
sumed by constraint-based models. These models are often given a connectionist implemen-
tation rooted in the notion of activation (Spivey & Tanenhaus, 1998; Tabor & Tanenhaus,
1999; Christiansen & Chater, 1999; Rohde, 2002; Mayberry, Crocker, & Knoeferle, 2009).
Besides lexicalism, these models differ from the “symbolist” account advanced in this pa-
per in virtue of being based upon an activation-based associative memory (Kohonen, 1989;
McElree, Foraker, & Dyer, 2003). In this paper’s model, the memory is a stack, and all
retrievals are successful, no matter how deep. Future work should examine ways to incorpo-
rate a more realistic activation-based memory like the one assumed in hybrid architectures
such as ACT-R and 4CAPS (Just & Varma, 2007).



Conclusion

Our findings speak to the role of grammar in accounting for sentence comprehension
difficulty. We compare two grammar-based complexity metrics while systematically varying
the degree of parallelism in a family of identical parsing systems. We find that whereas
surprisal and retrieval make different predictions in less parallel parsers, as the degree of
parallelism increases, both metrics become adequate for predicting eye fixation durations
in the Potsdam Sentence Corpus.

This result confirms the idea that grammar affects language comprehension through
both probabilistic and working memory constraints. It also supports the notion that ad-
equate models of comprehension difficulty are not optimal with respect to the task itself,
but are rather restricted by the kinds of memory constraints postulated in theories of
cognitive architecture.
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Appendix A
A probability model for the Nivre parser

Following Nivre (2006), a parser state is a record containing four fields:
σ A stack of already-parsed unreduced words
τ A list of input words
h A function from dependent words to heads
d A function from dependent words to arc types

The stack σ contains already-parsed words that have not yet encountered all dependencies.
The list τ serves as an input pointer, and h and d keep track of the dependency graph
found so far.

Each state transitions to a new state by one of four possible operators: LEFT,
RIGHT, REDUCE or SHIFT.



LEFT A left-arc is drawn from the word being parsed i to the first word j of
σ, making j the head of i ; i is popped off σ.

RIGHT A right-arc is drawn from the first word j of σ to the word being parsed
i, making i the head of j ; j is pushed onto σ.

SHIFT Shifts the word being parsed i onto σ; no arcs are drawn.
REDUCE Pops σ.

We use a maximum-entropy classifier to estimate the probability of a transition given
a state (Bishop, 2006, 198). This classifier is trained on newspaper text from the Negra and
Tiger treebanks (S. Brants et al., 2004). To obtain training data, we interpret the annota-
tions in the treebanks as a dependency graphs by repeatedly applying German head-finding
rules (Dubey, 2004). Since the 2006 vintage Nivre parser only works on projective depen-
dency graphs, we occasionally need to post-process a given graph to render it projective.
This happens primarily with punctuation, which does not figure in our PSC testing data.
We make recalcitrant dependency graphs projective by repeatedly “lifting” the head of
the shortest crossing dependency to the grandparent following Kahane, Nasr, and Ram-
bow (1998). These transformations can later be undone to recover parser output (Nivre
& Nilsson, 2005). From the dependency graph, we choose a canonical operator sequence
based on the idea of delaying REDUCE actions as long as possible. Starting with the
70,602 treebank sentences, this procedure yields about 3.1 million operator applications.
Each such application records a 4-way classification problem instance. The correct class
label names the observed operator application. The classifier estimates a discrete proba-
bility distribution over the four labels, given a finite feature vector summarizing particular
aspects of the antecedent parser state. In this work we use three symbol-valued features:

Stack1 the top stack symbol, along with the part-of-speech of the current
input word

Stack2 the top two stack symbols, along with the part-of-speech of the cur-
rent input word

Stack3 the top three stack symbols, along with the part-of-speech of the
current input word

By estimating transition probabilities, the classifier induces a conditional model of
parser states given an input string.

Parser accuracy

The simple features18 described above allow the parser to achieve F-scores between
72.4 and 96.3 for unlabelled dependencies across the various k.19 The parser’s imperfect
accuracy can be accounted for by three groups of errors: lexical ambiguity, true parser
errors, and annotation errors. The majority of the errors are due to lexical ambiguity,
such as the Prepositional Phrase Attachment ambiguity shown in Figure A1. Here, the
parser mistakenly attaches in a glade to deer rather than the verb browsing. A large
body of work in both psycholinguistics and computational linguistics argues that human
performance in these cases cannot be accurately captured by any sort of unlexicalized
model (Boland, 1992).

18More complicated sets of feature can provide higher accuracy. For recent reports from this rapidly-
changing field see, for instance, section 4 of Titov and Henderson (2007) or Table 1 of Zhang and Clark
(2009).

19The F-score is the weighted harmonic mean of precision and recall per-attachment: (2×precision×recall)
(precision+recall)

.

It is commonly used to determine overall parsing performance on a particular text sample (Manning &
Schütze, 1999, p.269).



A second class of parser errors are not obviously lexical in nature. For example,
the parser has difficulty with the German verb-second constructions, as in Figure A2. It
incorrectly attaches dependents, like bicycle, to auxiliary verbs, like had, rather than
to final verbs like left. Although less common than the first class of errors, these errors
decrease the accuracy of the parser.

A very small group of errors are caused by incorrect annotations in the PSC. The
annotation of punctuation is particularly erratic. Figure A3 illustrates a typical case,
in which anomalous attachment of a comma in the gold standard counts as a parsing error.

Appendix B
ACT-R memory activation dynamics

We adopt the ACT-R activation-based memory theory as presented, e.g. on pages
70-81 of Anderson and Lebiere (1998), in assumption A3 of Lewis and Vasishth (2005)
or in the section entitled “The Declarative Memory Module” in Anderson et al. (2004).
Retrieval time for a word participating in an attachment is based on that word’s activation,
A, given below in Equation 8.

Ai = Bi +
∑

j

WjSji (8)

Activation is the sum of two quantities. One is the word’s baseline activation Bi.
Baseline activation, defined in Equation 9, is increased to a greater degree by recent re-
trievals at time tj as compared to less recent retrievals that have decayed more. We follow
standard practice in ACT-R in setting the decay rate d to 0.5; in virtually all ACT-R
models, including the sentence processing model of Lewis and Vasishth (2005, 378), the
decay parameter is set to this value (Anderson, 2005).

Bi = ln

 n∑
j=1

t−d
j

 (9)

One other factor affecting a word’s—or more generally a chunk’s—activation is known
as similarity-based interference. Via the second addend in Equation 8, similarity-based
interference can decrease a word’s activation when it is retrieved (e.g. to complete a
dependency), if other words of the same grammatical category (hereafter, competitors) have
already been parsed. In this term, Wj denote weights associated with the retrieval cues j
that are shared with these competitor words in memory, and Sji symbolize the strengths of
association between cues j and chunks i. The weights are not generally free parameters in
ACT-R models but are set to G/j, where j is the number of cues involved during retrieval,
and G is the total amount of goal activation available, also set by default to 1.

The second part of the similarity-based interference equation, the strength of asso-
ciation Sji, is computed as follows:

Sji = Smax − ln(fanj) (10)

In Equation 10, fanj identifies the number of words that have the same grammatical cate-
gory as the cue j. These competitors are exactly the words sharing the same part-of-speech
tag as the correct retrieval target i. The maximum degree of association between similar
items in memory is Smax which we set to 1.5 following Lewis and Vasishth (2005).

Similarity-based interference as defined above is best explained with the help of a
schematic example (Figure B1). Assume for illustrative purposes that a noun must be
retrieved that has animacy status “animate” and number “singular”, and that there are
three previously processed nouns in memory that have these features. Each of the three



nouns has base-level activation B1-B3 respectively. Since three nouns are involved, the fan
is three, which gives us for each j, i: Sji = 1.5− ln(3) = 1.5− 1.098612 = 0.4013877. This
is turn gives us

∑
j
WjSji =

∑
j

0.5× 0.4013877 =
∑
j

0.2006939.

Contrast this with the situation where fan is 1 (only one noun matches the retrieval
cues). In that case, Sji = 1.5 − 0 = 1.5, and

∑
j
WjSji =

∑
j

0.5 × 1 =
∑
j

0.75. In other

words, activation of each noun would be lower when fan (amount of interference) is higher.
As discussed in the main text, in the present model, the only source of inteference is part
of speech.

At the other extreme, if the fan is high (5 or above), Sji would be negative and net
activation of a relevant item in memory could in principle become negative as well. The
sign of the activation value is not the important thing here; rather, the important thing
is the relative reduction in activation as a function of fan. In ACT-R models, a retrieval
threshold must be specified such that if the activation value of an item falls below this
threshold, that item would fail to be retrieved from memory. Lewis and Vasishth (2005)
set this value to −1.5.

In ACT-R, retrieval latency is an exponential function of activation. Equation 11
shows this relationship, which relates the temporal predictions we draw from the model to
the theoretical quantity, activation. We follow Lewis and Vasishth (2005) in setting F to
0.14.

Ti = Fe−Ai (11)

Productions in ACT-R accrue a fixed cost of 50 milliseconds to execute. In adapting
the Lewis and Vasishth (2005) model to the Nivre operators, we assume that a production
has fired if a dependency arc has been drawn or a new word has been shifted. An additional
production-firing cost of 50 ms also accrues if a decision is made to retrieve an item. This
reflects the architecture of ACT-R memory buffers.

The time taken to integrate a word into the analysis is thus a joint function of up
to two productions firing, along with any time spent performing a retrieval. Table B1
summarizes these time-costs. The REDUCE operation simply restructures a parser state
and could, in principle, be dispensed with in favor of a much larger inventory of attach-
ment actions. Like Lewis and Vasishth (2005) we abstract away from lexical retrieval costs
and set the time it takes to read a word to just 1 ms.

Transition Time
LEFT 50 ms + 50 ms + Retrieval Time
RIGHT 50 ms + 50 ms + Retrieval Time
SHIFT 50ms
REDUCE 0ms

Table B1: How time is determined in the parser.

Appendix C
Surprisal and probability models

This paper employs the term “surprisal” to evoke the idea that the difficulty of infre-
quent cognitive operations should scale logarithmically. By itself, this name does not entail
a commitment to what those operations are, and in fact the literature on surprisal reflects



considerable diversity on this point. Whereas Levy (2008) applies surprisal in conjunction
with probabilistic context-free grammars, Demberg and Keller (2008) compute surprisals
over a richer event space that can be directly related to Tree-Adjoining Grammar (Joshi,
2004).

This prior work is united with our own (Hale, 2001) in its reliance upon “joint” mod-
els of the word string along with its syntactic analysis. In contrast, the probability model
used in this paper is a “conditional” model of the syntactic analysis given the word string.
Theoretical work within computational linguistics continues to grapple with this distinc-
tion (Nederhof & Satta, 2006; Abney, McAllester, & Pereira, 1999). In certain cases the
two types of models are intertranslatable. However, the limit k = ∞, brought up by an
anonymous reviewer and discussed in footnote 9, presents a case in which one kind of
model would be meaningful whereas another would not be. The results we report do not
bear on the choice between these two kinds of probability model, but rather on the role of
controversial parameters, such as the amount of parallel processing, in adequate models of
human sentence comprehension.

To substantiate this assertion, we re-ran the simulations discussed in the main text
using an alternative parsing mechanism based on a simple generative model. Following
Titov and Henderson (2007), this alternative probability model explicitly rates the likeli-
hood of shifting every in-vocabulary word at each incremental state. The joint probability
of a string and its dependency graph is then the product of the operator-application prob-
abilities used to build the given graph in a canonical way. Using this generative probability
model to again derive both surprisal and retrieval-based comprehension difficulty predic-
tions, we find essentially the same pattern among the fitted coefficients as in Figure 10.
The sole exception to this pattern is in Regression Probability, which does not display
much of a systematic pattern at all. We believe this reflects the lower parsing accuracy
one would expect from a probabilistic classifier that is being asked to account both for the
probability of strings and their analyses. While the two models thus differ in accuracy level,
on the fixation duration data they derive the same result: that retrieval becomes a useful
predictor of fixation durations when given enough parallel processing, whereas surprisal is
useful even in serial processing.

Appendix D
Parametric bootstrap

Shown below is an illustration of the parametric bootstrap method used to confirm
that the models with surprisal and retrieval provide better fits to the data than the baseline
models. For illustrative purposes we show the comparison procedure for single fixation
durations; we carried out the procedure for all reading time measures, however. To our
knowledge, currently the R function for simulation does not work for generalized linear
mixed models; therefore, we did not run the bootstrap on the regression probability models.

In the parametric bootstrap, the simpler model is treated as the null hypothesis,
and the more complex model as the alternative hypothesis. Then, simulated dependent
values (e.g., log reading time) are repeatedly generated from the null hypothesis model,
and the simpler and more complex models are fit to the simulated data (as opposed to the
actual data). After each simulation run, two times the difference of the log-likelihood (2×
∆LogLik) between the simpler and more complex models is recorded. After n simulations,
this yields n 2 ×∆LogLik values, which constitute a distribution of log-likelihoods. The
final step is to compute the proportion of cases in the n simulations where the simulated
2 ×∆LogLik is greater than the observed 2 ×∆LogLik; this amounts to the probability
of obtaining the observed 2 × ∆LogLik, or a value greater than that, assuming that the



null hypothesis is true. The R code for such simulations is shown below.

## null hypothesis:
sfd.0<-lmer(log(SFD)~scale(log_freq,scale=F) +

scale(len,scale=F) +
scale(bigram,scale=F) +
scale(logitpred,scale=F) +

(1|sn) + (1|id),
d.sfd, REML=FALSE)

## alternative hypothesis:
sfd.1<-lmer(log(SFD)~scale(log_freq,scale=F) +

scale(len,scale=F) +
scale(bigram,scale=F) +
scale(logitpred,scale=F) +
scale(surprisalDep,scale=F)+

(1|sn) + (1|id),
d.sfd, REML=FALSE)

## parametric bootstrap:
nrep <- 1000
lrstat <- numeric(nrep)
## simulated data from null hypothesis:
for(i in 1:nrep)
{
simulated <- unlist(simulate(sfd.0))
alt <- lmer(simulated~scale(log_freq,scale=F) +

scale(len,scale=F) +
scale(bigram,scale=F) +
scale(logitpred,scale=F) +
scale(surprisalDep,scale=F)+

(1|sn) + (1|id),
d.sfd, REML=FALSE)

null <- lmer(simulated~scale(log_freq,scale=F) +
scale(len,scale=F) +
scale(bigram,scale=F) +
scale(logitpred,scale=F) +

(1|sn) + (1|id),
d.sfd, REML=FALSE)

lrstat[i] <- 2*(logLik(alt)-logLik(null))
}
## critical value
critical <- 2*(logLik(sfd.1)-logLik(sfd.0))
## probability of observing the critical value or greater
## assuming the null hypothesis is true:
mean(lrstat>critical)

Appendix E
Dependency distance in the PSC

The PSC dependencies range in distance from one to seven. Figure E1 depicts the
Zipfian distribution of these dependency lengths; the majority are relatively short, though
there are 14 dependencies that span seven words.



READING: ‘‘Der’’ at 0.

0.051: SHIFT ‘‘Der’’.

********************************************

Action Time for ‘‘Der’’: 0.051

********************************************

READING: ‘‘alte’’ at 0.051

0.102: SHIFT ‘‘alte’’.

********************************************

Action Time for ‘‘alte’’: 0.051

********************************************

READING: ‘‘Kapitaen’’ at 0.102

0.152: Decide to attach ‘‘alte’’ as dependent.

0.2263: Retrieve ‘‘alte’’.

0.2763: LEFT-ARC with ‘‘alte’’.

0.3263: Decide to attach ‘‘Der’’ as dependent.

0.4153: Retrieve ‘‘Der’’.

0.4653: LEFT-ARC with ‘‘Der’’.

0.5163: SHIFT ‘‘Kapitaen’’.

********************************************

Action Time for ‘‘Kapitaen’’: 0.4143

********************************************

READING: ‘‘goss’’ at 0.5163...

(a) Trace of 1.

READING: ‘‘Der’’ at 0.

0.051: SHIFT ‘‘Der’’.

********************************************

Action Time for ‘‘Der’’: 0.051

********************************************

READING: ‘‘alte’’ at 0.051

0.102: SHIFT ‘‘alte’’.

********************************************

Action Time for ‘‘alte’’: 0.051

********************************************

READING: ‘‘Kapitaen’’ at 0.102

0.152: Decide to attach ‘‘alte’’ as dependent.

0.2263: Retrieve ‘‘alte’’.

0.2763: LEFT-ARC with ‘‘alte’’.

0.3273: SHIFT ‘‘Kapitaen’’.

********************************************

Action Time for ‘‘Kapitaen’’: 0.2253

********************************************

READING: ‘‘goss’’ at 0.3273...

(b) Trace of 2.

READING: ‘‘Der’’ at 0.

0.051: SHIFT ‘‘Der’’.

********************************************

Action Time for ‘‘Der’’: 0.051

********************************************

READING: ‘‘alte’’ at 0.051

0.102: SHIFT ‘‘alte’’.

********************************************

Action Time for ‘‘alte’’: 0.051

********************************************

READING: ‘‘Kapitaen’’ at 0.102

0.152: SHIFT ‘‘Kapitaen’’.

********************************************

Action Time for ‘‘Kapitaen’’: 0.51

********************************************

READING: ‘‘goss’’ at 0.152...

(c) Trace of 3.

Figure 8. A partial trace of the parser’s calculation for the top three parses at Kapitaen, in
seconds.
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Figure 9. Surprisal alone predicts at k = 1.
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Coefficients for surprisal and retrieval by beam width level (k)
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Figure 10. With large beams, surprisal and retrieval predict the same fixations. For each fixation
measure, the coefficients for surprisal (left) and retrieval (right) are given along the y-axis, which
is scaled to units of standard deviation. The x-axis represents the degree of parallelism, k.



Figure A1. The parser requires lexical disambiguating information to correctly analyze preposi-
tional phrase ambiguities.

Figure A2. The parser is unable to correctly parse some verb-second structures in German.

Figure A3. Some structures that cause reduction in parser accuracy are genuine annotation errors.
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Figure B1. A schematic diagram illustrating how similarity-based interference works in ACT-R.



1 2 3 4 5 6 7 8 9

Dependency distance in the PSC

Dependency distance

N
u

m
b

er
 o

f 
in

st
an

ce
s

0
50

10
0

15
0

20
0

25
0

Figure E1. Dependency distance follows a Zipfian distribution.


