UM infixation and paradigmatic gaps in Thao

The morpheme *UM* (usually marking actor voice [AV]) in the Austronesian language family has been widely discussed in previous literature (Prince & Smolensky 1993/2004, Orgun & Sprouse 1999, Crowhurst 2001, Klein 2005). *UM* most often appears as an infix; however, with respect to stems that contain labial consonants, this infix patterns differently. In this paper, I investigate the behavior of *UM* in Thao, an Austronesian language spoken in central Taiwan, and the appearance of gaps related to this morpheme.

Five realizations of *UM* in Thao are documented by Blust (2003): infix -*um*- in stems beginning with two consonants (*t-um-qir/ 'protest'), infix -*m*- in stems with a single consonant (*t-m-iuð/ 'to comb'), prefix *m*- in /ð, r, l/ initial stems (*m-riqas/ 'see'), coalescence in /p/ initial stems (*pataʃ/ → /mataʃ/ 'write'), and no realization of the morphological category in /b, d, f, m, n/ initial stems (*fariw/ → gap 'buy'). For the first four realizations, I argue that several phonological processes are involved. The -*um/-*m*- alternation is accounted for by vowel deletion related to stress assignment and the prosodic requirement of onset. Prefixation is employed to repair a down-stepping sonority in onset (*r-m-riqas/ → /m-riqas/). Coalescence in /p/ initial stems is attributed to feature co-occurrence restriction on labial (Obligatory Contour Principle on labial, or OCP-L) (*p-m-ataʃ/ → /mataʃ/). However, coalescing two labials does not apply to other labials /b, f, m/; instead, gaps occur. I propose that two consonants of different manners and two identical consonants cannot be coalesced.

The appearance of gaps in Thao seems to be more complicated if the following facts are considered. The appearance of gaps triggered by the OCP effect only targets *UM* concatenation; other morphemes with labials do not trigger gaps. Also, only stem-initial consonants trigger gaps in Thao while other labials in a stem do not.

The first fact is that the appearance of gaps is morpheme specific. If we compare *UM* with the prefix *ma-*, which marks stative actor voice, when both *UM* and *ma-* concatenate to the same root, a gap occurs with the former but not with the latter (see (1)). It is clear that a markedness constraint (here OCP-L) should apply equally to any marked structures. However, the marked structure created by *ma-* is accepted, but the one created by *UM* is left unformed. If we evaluate the affixes with respect to each other within a paradigm, it becomes clear that different types of affixes respond to the same faithfulness/markedness constraint differently. I adopt Rice’s (2005) MAX{CAT} constraints, which require the realization of certain morphological categories, set within an Optimal Paradigms approach to deal with this problem. Within a paradigm, if both markedness constraints and faithfulness constraints rank higher than constraints that require the expression of a certain morphological category, then the grammar chooses a gap over realizing the morphological category. In Thao, the requirement of realizing *ma-* (MAX{STATIVE-AV}) ranks higher than markedness constraints and faithfulness constraints while the requirement of realizing *UM* (MAX{DYNAMIC-AV}) ranks lower than both (see (2)).

The other fact is that the OCP effect is restricted to stem-initial consonants. I propose, following Beckman (1997), that this restriction is due to the special status of the stem/root-initial consonants: stem/root-initial positions are stronger positions. Adopting Walker’s (Walker 2000) segmental correspondence (as opposed to feature spreading) and Taylor’s (2008) further extension of this approach, I suggest that there is a correspondence between a segment in a strong position, here the initial consonant, and an adjacent sound bearing the same feature. I use a positional correspondence constraint Corr*-σ*-C (see (3)) to establish the correspondence between the stem-initial segment and its adjacent segments. This specific Corr*-σ*-C constraint and OCP-L rank higher than the general Corr-C*-σ*-C (see (4)); thus, only stem-initial segments and the labial in *UM* are subject to OCP-L.

This paper investigate the different behaviors of *UM* in Thao, especially the appearance of gaps. To account for the specificity of the appearance of gaps, different MAX{CAT} constraints are proposed, MAX{STATIVE-AV} and MAX{DYNAMIC-AV}; the MAX{CAT} constraints flank a markedness constraint (OCP-L). This ranking of MAX{CAT} constraints with markedness/faithfulness constraints adds another typological prediction to Rice’s proposal. For initial/non-initial asymmetry, a positional correspondence constraint is suggested to ensure the stem-initial segment is in correspondence with its adjacent segment.
(1) Ma-/UM- asymmetry

Root

\(\text{ma-} \)

\(\text{braq} \)

\(\text{ma-}^{\text{um}} \text{braq} \) \hspace{1cm} 'having a hole'

\(\text{fariw} \)

\(\text{ma-}^{\text{um}} \text{fariw} \) \hspace{1cm} 'buy'

\(\text{UM} \)

\(^{\text{b-um-raq}}^{\text{b-m-raq}} \) \hspace{1cm} gap

\(^{\text{f-um-fariw}}^{\text{f-m-fariw}} \) \hspace{1cm} gap

(2) Ma- and UM affixation

<table>
<thead>
<tr>
<th></th>
<th>MAX{STATIC-AV}</th>
<th>OCP-L</th>
<th>MAX{DYNAMIC-AV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. f-um-ariw</td>
<td>**!</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ma-fariw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. f-um-airw</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. ma-fariw</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>d.</td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

MAX{STATIC-AV} ‘Realize the expression of the stative actor voice morpheme ma-.’
MAX{DYNAMIC-AV} ‘Realize the expression of the dynamic actor voice morpheme UM’

Let \(S \) be an output string of segments and let \(\text{Ci}, \text{Cj} \) be segments that share a specified set of features \(F \). If \(\text{Ci}, \text{Cj} \in S \), and \(\text{Ci} \) is in stem-initial position, then \(\text{Ci} \) is in a relation with \(\text{Cj} \); that is, \(\text{Ci} \) and \(\text{Cj} \) are correspondents of one another.

Let \(S \) be an output string of segments and let \(\text{Ci}, \text{Cj} \) be segments that share a specified set of features \(F \). If \(\text{Ci}, \text{Cj} \in S \), then \(\text{Ci} \) is in a relation with \(\text{Cj} \); that is, \(\text{Ci} \) and \(\text{Cj} \) are correspondents of one another.

Selected references

